Research & Development World

  • Home Page
  • Topics
    • Aerospace
    • Archeology
    • Automotive
    • Biotech
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Market Pulse
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Battery Technology
    • Imaging
    • Nanotechnology
    • Semiconductors
  • Controlled Environments
    • Cleanrooms
    • Graphene
    • Lasers
    • Regulations/Standards
    • Sensors
  • Scientific Computing
    • Big Data
    • HPC/Supercomputing
    • Informatics
    • Security
    • Software
  • R&D 100 Awards
    • 2020 Winners
    • Winner Archive
    • R&D 100 Conference
  • Resources
    • Digital Issues
    • Podcasts
    • Subscribe
  • 2020 Funding Forecast
  • COVID-19

A machine learning solution for designing materials with desired optical properties

By Heather Hall | December 2, 2020

By Julie Chao

Controlling light-matter interactions is central to a variety of important applications, such as quantum dots, which can be used as light emitters and sensors. (Credit: PlasmaChem)

Understanding how matter interacts with light – its optical properties – is critical in a myriad of energy and biomedical technologies, such as targeted drug delivery, quantum dots, fuel combustion and cracking of biomass. But calculating these properties is computationally intensive, and the inverse problem – designing a structure with desired optical properties – is even harder.

Now Berkeley Lab scientists have developed a machine learning model that can be used for both problems – calculating optical properties of a known structure and, inversely, designing a structure with desired optical properties. Their study was published in Cell Reports Physical Science.

“Our model performs bi-directionally with high accuracy and its interpretation qualitatively recovers physics of how metal and dielectric materials interact with light,” said corresponding author Sean Lubner.

Lubner notes that understanding radiative properties (which includes optical properties) is equally important in the natural world for calculating the impact of aerosols such as black carbon on climate change.

The machine learning model proposed in this study was trained on spectral emissivity data from nearly 16,000 particles of various shapes and materials that can be experimentally fabricated.

“Our machine learning model speeds up the inverse design process by at least two to three orders of magnitude as compared to the traditional method of inverse design,” said co-author Ravi Prasher, who is also Berkeley Lab’s Associate Director for Energy Technologies.

Mahmoud Elzouka, Charles Yang, and Adrian Albert, all scientists in Berkeley Lab’s Energy Technologies Area, were also co-authors.

Tell Us What You Think! Cancel reply

Related Articles Read More >

Carbon fiber optimized for wind turbine blades could bring cost, performance benefits
R&D 100 winner of the day: M2R2 CLLBC Multimode Radioisotope Identification Detector (RIID)
ORNL’s groundbreaking experiment tracks real-time transport of individual molecules
R&D 100 winner of the day: NEOSEED NR-8800 durable water repellent (DWR) for textile

Need R&D World news in a minute?

We Deliver!
R&D World Enewsletters get you caught up on all the mission critical news you need in research and development. Sign up today.
Enews Signup
Tweets by @RandDWorld

R&D World Digital Issues

February 2020 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R& magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • 2020 Global Funding Forecast

Copyright © 2021 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • Home Page
  • Topics
    • Aerospace
    • Archeology
    • Automotive
    • Biotech
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Market Pulse
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Battery Technology
    • Imaging
    • Nanotechnology
    • Semiconductors
  • Controlled Environments
    • Cleanrooms
    • Graphene
    • Lasers
    • Regulations/Standards
    • Sensors
  • Scientific Computing
    • Big Data
    • HPC/Supercomputing
    • Informatics
    • Security
    • Software
  • R&D 100 Awards
    • 2020 Winners
    • Winner Archive
    • R&D 100 Conference
  • Resources
    • Digital Issues
    • Podcasts
    • Subscribe
  • 2020 Funding Forecast
  • COVID-19