Research & Development World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE

A quantum leap in nanoparticle efficiency

By R&D Editors | October 31, 2014

New research has unlocked the secrets of efficiency in nanomaterials, that is, materials with very tiny particles, which will improve the future development of chemical sensors used in chemical and engineering industries.

In an international study University of Melbourne and the National Institute of Standards and Technology in the US found that pairs of closely spaced nanoparticles made of gold can act as “optical antennas”. These antennae concentrate the light shining on them into tiny regions located in the gap between the nanoparticles. Researchers developed new technology to detect these levels of light.

Researchers found the precise geometry of nanoparticle pairs that maximizes light concentration resolving a hotly debated area of quantum physics. This geometry now determines the efficiency nanoparticle use as a chemical sensor in sensing minute quantities of chemicals in air and water.

Chief Investigator Ken Crozier, a professor of Physics and Electronic Engineering at the University of Melbourne said, “Up until now there were two competing theories surrounding what gap was required between particles to best concentrate the light but we now have the technology to test it.”

The study was published in Nature Communication and provides scientists with a deeper understanding of the physics of nano material.

Lead author Dr Wenqi Zhu, from the National Institute of Standards and Technology (NIST) in the United States performed the work under Crozier’s supervision as a PhD student at Harvard University, said, “We found the ultimate limit for light concentration for fabricated nanoparticles.”

Professor Crozier said “This work is important for engineers and scientists working in the nanomaterial industry.”

The work was supported by the National Science Foundation (United States) and by the Harvard Quantum Optics Center.

Source: Univ. of Melbourne

Related Articles Read More >

First CRISPR-edited spider spins red fluorescent silk
KIST carbon nanotube supercapacitor holds capacity after 100,000 cycles
A new wave of metalworking lets semiconductor crystals bend and stretch
LLNL deposits quantum dots on corrugated IR chips in a single step
rd newsletter
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, trends, and strategies in Research & Development.
RD 25 Power Index

R&D World Digital Issues

Fall 2024 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R&D magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • Global Funding Forecast

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE