Research & Development World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • Educational Assets
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE

AI gets a boost via LLNL, Sambanova collaboration

By Heather Hall | October 21, 2020

Lawrence Livermore National Laboratory has installed a new artificial intelligence accelerator from SambaNova Systems into the National Nuclear Security Administration’s Corona supercomputing cluster, which scientists are using to conduct fusion energy research for stockpile stewardship applications, find therapeutics for COVID-19 and perform other unclassified basic science work. LLNL researchers said the AI system will improve overall speed, performance and productivity, and allow them to further explore the combination of AI and high-performance computing —an approach known as “cognitive simulation.”  Photos by Katrina Trujillo/LLNL.

Lawrence Livermore National Laboratory (LLNL) has installed a state-of-the-art artificial intelligence (AI) accelerator from SambaNova Systems, the National Nuclear Security Administration (NNSA) announced Monday, allowing researchers to more effectively combine AI and machine learning (ML) with complex scientific workloads.

LLNL has begun integrating the new AI hardware, SambaNova Systems DataScale, into the NNSA’s Corona supercomputing cluster, an 11-plus petaFLOP machine that Lab scientists are using to conduct fusion energy research for stockpile stewardship applications, find therapeutics for COVID-19 and perform other unclassified basic science work.

Lab researchers said the upgrade will allow them to run scientific simulations on the Corona system while offloading AI calculations from those simulations to the SambaNova DataScale system, improving overall speed, performance and productivity.

“This integration enables low-latency communication between the two devices allowing them to operate in tandem with greater overall efficiency,” said LLNL computer scientist Ian Karlin, who heads the SambaNova project. “In addition, scientific simulations running on Corona will feed data as they run into the SambaNova DataScale system to train new machine learning models based on their results.”

Once the integration is complete, LLNL researchers plan to use the platform to continue exploring the combination of high-performance computing (HPC) and AI, an innovative effort LLNL calls “cognitive simulation” (CogSim). Researchers said the two systems working in tandem will enable more streamlined computation and allow them to move applications into this new paradigm of computing.

“AI accelerators provide the basis for a heterogeneous system architecture that will support efficient cognitive simulation,” said Bronis de Supinski, chief technology officer for Livermore Computing. “Livermore Computing is leading the integration of these subsystems into large-scale resources such as Corona. Our strategy is already demonstrating that this approach will provide more cost-efficient solutions for the workloads of the future.”

The AI system was funded by NNSA’s Advanced Simulation and Computing program and comes to LLNL as part of an agreement between the Department of Energy (DOE) and SambaNova Systems to accelerate AI within the DOE national laboratories. Another such system is being deployed at Los Alamos National Laboratory, where it has been integrated into a heterogeneous system called “Darwin,” and will be initially used to model quantum chemistry, according to NNSA.

“SambaNova Systems is enabling next-generation AI applications to be reimagined beyond today’s current infrastructure limitations,” said Marshall Choy, vice president of products, SambaNova Systems. “Working in close partnership with LLNL’s team of researchers to help accelerate world-changing discoveries and experiments is a game changer for science and computing.”

SambaNova DataScale is designed for efficient deep-learning inference and training calculations. It features the SambaFlow software stack, the world’s first Reconfigurable Dataflow Unit (RDU) chip and the SambaNova Systems Cardinal SN10 RDU. The RDU is a next-generation computing processor designed from the ground up for efficiently running dataflow workloads such as AI. The SambaNova DataScale system contains eight RDUs — each one capable of supporting multiple simultaneous jobs or working seamlessly together to execute large-scale models, according to the company.

An early test for the system at LLNL is a CogSim approach to inertial confinement fusion (ICF) reactions for stockpile stewardship applications. Researchers said the SambaNova DataScale’s ability to run dozens of inference models at once while performing scientific calculations on the Corona system will aid in their quest of using machine learning to improve high energy output and create more robust fusion implosions.

“AI acceleration of even one of the many complicated physics packages in an ICF simulation can halve the time to solution,” said LLNL physicist Brian Spears. “This allows us great flexibility – either to explore a wider range of physics hypotheses or to increase the detail of our physics models without costing us more time.”

Initial performance results are promising, with early applications showing 5x or larger speedups when normalized to transistors used vs. GPUs, researchers said.

LLNL computer scientists added they will be making their applications asynchronous to take advantage of tandem computing and increased efficiency.

“We are redesigning our HPC codes to offload machine learning (ML) calculations,” said LLNL AI researcher Brian Van Essen. “While the ML work is done on accelerators the HPC calculation will continue on GPU machines.”

Researchers said the SambaNova DataScale system can also be applied to the small molecule drug design work being done on the Corona system to find therapeutic compounds capable of binding to SARS-CoV-2, the virus that causes COVID-19. This work uses machine learning models to generate new potential compounds that are evaluated for safety and efficacy using HPC simulations on the Corona system.

For more information, click here

 

 

Related Articles Read More >

Dinner plate-sized chips with trillions of transistors could give traditional GPUs a run for their money
FDA’s AI tool Elsa signals new era for regulatory review, says QuantHealth CEO
Sonar Screen For Submarines And Ships. Radar Sonar With Object On Map. Futuristic HUD Navigation monitor
Pentagon places big bets on frontier AI, quantum sensing and next-gen avionics in nearly $3 billion in defense technology contracts 
This month in AI research: June 2025 sees reports of $100M salary offers, advanced models defying shutdown and IBM’s quantum leap
rd newsletter
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, trends, and strategies in Research & Development.
RD 25 Power Index

R&D World Digital Issues

Fall 2024 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R&D magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • Global Funding Forecast

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • Educational Assets
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE