Research & Development World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE

ALCF Selects Projects for Theta Early Science Program

By R&D Editors | August 6, 2015

For one of the Theta ESP projects, University of Chicago scientist Alexei Khokhlov will continue his research into the deflagration-to-detonation transition process in hydrogen-oxygen mixtures. This image from a previous INCITE project shows weak ignition behind a reflected Mach=1.5 shock in a stoichiometric hydrogen-oxygen mixture at 0.1 atm initial pressure. Courtesy of Charles Bacon, Argonne National Laboratory; Alexei Khokhlov, University of Chicago; Joanna Austin and Andrew Knisely, University of Illinois at Urbana-Champaign.The Argonne Leadership Computing Facility (ALCF), a Department of Energy (DOE) Office of Science User Facility, has selected six projects for its Theta Early Science Program (ESP), a collaborative effort designed to help prepare scientific applications for the architecture and scale of the new supercomputer. 

Theta, an early production system based on Intel’s second-generation Xeon Phi processor, will arrive in 2016 and serve as a bridge between the ALCF’s current supercomputer, Mira, and its next leadership-class supercomputer, Aurora, which is scheduled for delivery in 2018.

The Theta ESP brings together computational scientists, code developers and computing hardware experts to optimize key applications for Theta, and to solidify libraries and infrastructure to pave the way for other applications to run on the system.

Modeled after the ALCF’s highly successful ESP for Mira, the program also gives researchers substantial allocations of pre-production compute time on Theta to pursue innovative computational science calculations pushing the boundary of what’s possible with leadership-class supercomputers.

“Not only did our ESP for Mira help the system to hit the ground running on day one, it also produced invaluable lessons learned and some very interesting new science, including the first accurately computed values for the bulk properties of solid argon, a noble gas element,” said Tim Williams, an ALCF computational scientist who manages the ESP. “We’re looking forward to seeing what the new ESP projects can do with Theta’s leading-edge architecture.”

Like the typical ALCF workload, the six selected ESP projects, known as Tier 1 projects, represent a wide spectrum of scientific areas and numerical methods (see project descriptions below).

To help develop and optimize their software for Theta, project teams will collaborate with ALCF staff, as well as vendor staff through the ALCF Intel-Cray Center for Excellence. Four of the six projects will also be assigned a dedicated postdoctoral researcher.

In addition, the ALCF will host ESP training sessions, including a virtual kick-off workshop on system hardware and programming, and a hands-on workshop for testing and debugging of project applications.

Prior to Theta’s availability, the ALCF will offer access to Theta simulator software, and provide allocations on Mira for development work that does not depend on having the new hardware (e.g., new algorithms, new physics modules, basic introduction of threads). ESP project teams will also have access to training and hardware at the Oak Ridge Leadership Computing Facility and the National Energy Research Supercomputing Center as alternative development platforms to encourage application code portability among heterogeneous architectures.

Because of the strong response to the call for proposals, the ALCF is expanding the Theta ESP to include six additional Tier 2 projects to prepare other applications for Theta. These projects will not receive allocations for science runs, but they will have access to ESP training, an ESP discussion forum, to Theta simulator software, to early hardware and to Theta itself for porting, tuning and debugging.

 

Tier 1 Projects

Scale-Resolving Simulations of Wind Turbines with SU2

PI: Juan J. Alonso, Stanford University

Code: SU2

Alonso will use Theta to develop a simulation capability to design better wind turbines and to lay out large wind farms for maximum energy extraction and improved turbine fatigue life. To do so, his research team will generate a database of large eddy simulations of various single and multiple wind turbine settings.

 

Large-Scale Simulation of Brain Tissue: Blue Brain Project, EPFL

PI: Fabien Delalondre, Ecole Federale Polytechnique de Lausanne

Code: CoreNeuron

Deladondre will use Theta to improve our understanding of the brain using simulations of brain plasticity—experience-dependent changes in synaptic connectivity. Other work will include rodent somatosensory cortex simulation, and simulating the electrical activity of the largest possible brain model for several seconds of biological time.

 

First-Principles Simulations of Functional Materials for Energy Conversion

PI: Giulia Galli, Argonne National Laboratory/University of Chicago

Codes: Qbox, WEST

Galli will combine ab initio molecular dynamics and post-density functional theory methods to optimize properties of nanostructured materials for use in solar and thermal energy conversion devices at an unprecedented level of accuracy. The ultimate goal is to provide a truly predictive tool for device performance within a Materials Genome Initiative design framework.

 

Next-Generation Cosmology Simulations with HACC: Challenges from Baryons

PI: Katrin Heitmann, Argonne National Laboratory

Code: HACC

Heitmann’s project aims to further our understanding of astrophysical processes by performing detailed simulations of the universe for comparison with the latest observational data. The simulations will disentangle astrophysical processes (e.g., galaxy evolution) from fundamental physics (e.g., dark energy), helping mitigate one of the major sources of systematic uncertainties for upcoming cosmological surveys.

 

Direct Numerical Simulations of Flame Propagation in Hydrogen-Oxygen Mixtures in Closed Vessels

PI: Alexei Khokhlov, University of Chicago

Code: HSCD

Khokhlov will perform direct numerical simulations of the flame acceleration and the deflagration-to-detonation transition process in hydrogen-oxygen mixtures in closed spherical vessels—exactly matching experimental apparatus. This research is aimed at improving the industrial and public safety of hydrogen fuels and certain types of water-cooled nuclear reactors in which hydrogen can accumulate.

 

Free Energy Landscapes of Membrane Transport Proteins

PI: Benoit Roux, Argonne National Laboratory/University of Chicago

Code: NAMD

Roux will carry out molecular dynamics simulations to provide detailed visualizations of the large conformational changes of membrane transport proteins and quantitative predictions of the energetics of these processes. This atomistic picture of membrane transport proteins stands to improve our understanding of a broad range of biological functions.

 

Tier 2 Projects

 

Electronic Structure Based Discovery of Hybrid Photovoltaic Materials on Next-Generation HPC Platforms

PI: Volker Blum, Duke University

Code: FHI-aims, GAtor

 

Flow, Mixing and Combustion of Transient Turbulent Gaseous Jets in Confined Cylindrical Geometries

PI: Christos Frouzakis, Swiss Federal Institute of Technology Zurich (ETHZ)

Code: Nek5000

 

Advanced Electronic Structure Methods for Heterogeneous Catalysis and Separation of Heavy Metals

PI: Mark Gordon, Iowa State University

Code: GAMESS

 

Extreme Scale Unstructured Adaptive CFD: From Multiphase Flow to Aerodynamic Flow Control

PI: Kenneth Jansen, University of Colorado Boulder

Code: PHASTA

 

The Hadronic Contribution to the Anomalous Magnetic Moment of the Muon

PI: Paul Mackenzie, Fermilab

Codes: MILC, CPS

 

Quantum Monte Carlo Calculations in Nuclear Theory

PI: Steven Pieper, Argonne National Laboratory

Code: GFMC

 

DOE’s Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time.  For more information, please visit science.energy.gov.

Related Articles Read More >

From solar system simulations to SaaS savings, how Codeium’s AI agent empowers non-coders and scientists alike
Aardvark AI forecasts rival supercomputer simulations while using over 99.9% less compute
Quantum Brilliance, Pawsey integrate room-temp quantum with HPC on NVIDIA GH200
Frontier supercomputer reveals new detail in nuclear structure
rd newsletter
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, trends, and strategies in Research & Development.
RD 25 Power Index

R&D World Digital Issues

Fall 2024 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R&D magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • Global Funding Forecast

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE