Research & Development World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE

All-Female Salamanders Regrow Tails 36% Faster

By R&D Editors | May 2, 2016

Researcher Rob Denton holds a salamander involved in research showing that an all-female type of salamander regenerates new tail tissue much faster than its heterosexual counterparts. (Credit: Kevin Fitzsimons, The Ohio State University)The lady salamander that shuns male companionship may reap important benefits.

For instance, when a predator snaps off her tail.

New research from The Ohio State University compared an all-female population of mole salamanders to a related heterosexual species and found they grew their tails back 36 percent faster. The unisexual salamanders (part of the Ambystoma genus) contain DNA of up to five species and reproduce primarily by cloning themselves.

Salamanders’ tails play a critical role in predator avoidance. As larvae, tails help them swim away. Once the animals are land-dwellers, the tails act as a distraction.

After accounting for weight and size differences – the all-female salamanders are larger and have more tail to grow back – the team concluded that the unisexual animals regenerated tail tissue at 1.5 times the rate of their heterosexual counterparts.

“I don’t think we expected it to happen so fast,” said Robert Denton, co-author of the study and a graduate student in Ohio State’s Department of Evolution, Ecology and Organismal Biology.

The study appears in the Journal of Zoology.

Populations of unisexual mole salamanders have survived millions of years through cloning. Because they aren’t mating with males (though they do mix things up by “borrowing” sperm left behind on leaves and twigs), their DNA stays relatively static.

And that might lead a salamander scientist to suspect the species would fizzle out. (Passing harmful genetic mutations to generation after generation could be bad.)

“I was wondering what makes them thrive, and there are some things that might point to them regenerating body parts at faster rates,” said Monica Saccucci, who led the study as an undergraduate at Ohio State.

Unisexual salamanders are polyploids, meaning they have more than two sets of chromosomes. This is relatively common in plants and occurs in some other animals, including goldfish. But most animals have two sets, one from mom and one from dad.

Scientists who study everything from tomatoes to humans understand that genetic differences can play significantly into how fast cells divide and tissue grows. But little research has looked at closely related salamanders with different reproduction strategies.

The research team collected egg masses from wetlands in rural Ohio and reared 10 unisexual salamanders and 30 smallmouth salamanders for comparison. Then the researchers removed a portion of the salamanders’ tails and monitored regrowth for four months.

Both groups regenerated at about the same rate up until three weeks after their tails were removed. (This was also the time most animals’ diets were upgraded from brine shrimp to larger plankton, but it’s unclear what role the nutrient shift might have played.)

Then the tails of the unisexual salamanders began to grow at a rate that outpaced their heterosexual counterparts. In about 10 weeks, the unisexuals had brand-new tails. It took the other salamanders another month or so.

The discovery illuminates how genetic differences can contribute to differences in regeneration rates that could amount to at least a partial explanation for the long-term survival of the hybrid unisexual salamanders, Saccucci said. And it shows a parallel between the small vertebrates and polyploid snails, which also regenerate after injury more quickly.

Denton said it remains unclear whether the faster regeneration is due to the genomic differences alone.

“Is it because they have more genomes or because they reproduce differently? We don’t know and it’s difficult to disentangle with these animals,” he said.

While the unisexual salamanders usually reproduce through cloning, they “borrow” salamander sperm from other species to stimulate egg production, a process called kleptogenesis.

“They can steal sperm from male salamanders and incorporate it into their genome. We don’t know exactly how that works, but it’s interesting,” Saccucci said.

Maintaining a species without males is efficient if you can pull it off, because all the females are able to create more animals without the usual complications of mating, Denton said.

Saccucci, now a medical student at the University of Cincinnati, was particularly interested in regeneration because of its promise in human medicine.

“I had salamanders to work with, and they can regenerate all kinds of structures — tails, digits, part of their heart, part of their eye. That piqued my interest,” she said.

In a salamander’s life, regeneration ranks high in importance.

“They get injured a lot,” Saccucci said. “If you can’t regenerate, you’re dead.”

 

Related Articles Read More >

Eli Lilly facility
9 R&D developments this week: Lilly builds major R&D center, Stratolaunch tests hypersonic craft, IBM chief urges AI R&D funding
professional photo of wooly mammoth in nature --ar 2:1 --personalize sq85hce --v 6.1 Job ID: 47185eaa-b213-4624-8bee-44f9e882feaa
Why science ethicists are sounding skepticism and alarm on ‘de-extinction’
ALAFIA system speeds complex molecular simulations for University of Miami drug research
3d rendered illustration of the anatomy of a cancer cell
Funding flows to obesity, oncology and immunology: 2024 sales data show where science is paying off
rd newsletter
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, trends, and strategies in Research & Development.
RD 25 Power Index

R&D World Digital Issues

Fall 2024 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R&D magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • Global Funding Forecast

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE