Research & Development World

  • Home Page
  • Topics
    • Aerospace
    • Archeology
    • Automotive
    • Biotech
    • Chemistry
    • COVID-19
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Market Pulse
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
      • Software
    • Semiconductors
  • 2021 R&D 100 Award Winners
    • R&D 100 Awards
    • 2020 Winners
    • Winner Archive
  • Resources
    • Digital Issues
    • Podcasts
    • Subscribe
  • Global Funding Forecast
  • Webinars

All HIV not created equal: Scientists can identify which viruses cause infection

By R&D Editors | July 21, 2014

A cartoon showing a single HIV-1 particle being captured by an optical trap delineated by the white lines and red shadows. Image: David BrennanHIV-infected people carry many different HIV viruses and all have distinct personalities—some much more vengeful and infectious than others.

Yet, despite the breadth of infectivity, roughly 76% of HIV infections arise from a single virus. Now, scientists believe they can identify the culprit with very specific measurements of the quantities of a key protein in the HIV virus.

Quantifying this key protein may reveal which of the many viruses present actually caused the infection.

The Univ. of Michigan study is thought to be the first in which researchers were able to capture HIV at the single-particle level and measure with molecular resolutions, said principal investigator Wei Cheng of the U-M College of Pharmacy. Cheng’s group found that the HIV virus particles have different quantities of a key protein that enables virulence, and the protein-rich virus particles were more infectious than the others.

“There were significant molecular differences in the HIV viral particles—some were very dangerous and infectious, and some were more tame. The virus was very heterogeneous,” Cheng said. “Our technique lets us see differences down to the single molecule level, so if one virus particle differs from another by even one molecule, our instrument can detect that.”

Now that scientists can measure molecular differences in HIV viral particles, there’s a possibility that drugs could be developed to target the molecular features present in the more virulent strains, he said.

Cheng’s laboratory developed and used a new optical technique, which is outlined in a previous paper, to measure the particles.

To study the HIV viral particles, the U-M team improved upon an already existing tool called optical tweezers, which uses photons, or light, to manipulate tiny molecular motors or nanostructures. This immobilizes the structure and enables contact-free study that doesn’t disturb or distort the structure.

This new U-M optical technique gives rise to a couple different research directions for Cheng’s laboratory, he said. Scientists can now infect individual cells with single HIV viral particles to determine the particle’s virulence. This technique also has the potential for sorting of viruses and application in other deadly viruses. Ultimately, Cheng said they hope to learn which strains of HIV contain the most dangerous viral particles most likely to infect healthy cells.

The study appears online in Nature Nanotechnology.

Source: Univ. of Michigan

Related Articles Read More >

Novel mass spectrometry solution simplifies insight gathering into macromolecular complexes
ENPICOM launches display solution to accelerate antibody selection while maximizing precision
Thermo Fisher Scientific autoimmune-testing instruments now available in the U.S.
Thermo Fisher Scientific and Qatar Genome Program partner to advance precision medicine 
2021 R&D Global Funding Forecast

Need R&D World news in a minute?

We Deliver!
R&D World Enewsletters get you caught up on all the mission critical news you need in research and development. Sign up today.
Enews Signup

R&D World Digital Issues

February 2020 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R& magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • 2021 Global Funding Forecast

Copyright © 2022 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • Home Page
  • Topics
    • Aerospace
    • Archeology
    • Automotive
    • Biotech
    • Chemistry
    • COVID-19
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Market Pulse
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
      • Software
    • Semiconductors
  • 2021 R&D 100 Award Winners
    • R&D 100 Awards
    • 2020 Winners
    • Winner Archive
  • Resources
    • Digital Issues
    • Podcasts
    • Subscribe
  • Global Funding Forecast
  • Webinars