Research & Development World

  • Home Page
  • Topics
    • Aerospace
    • Archeology
    • Automotive
    • Biotech
    • Chemistry
    • COVID-19
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Market Pulse
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
      • Software
    • Semiconductors
  • 2021 R&D 100 Award Winners
    • R&D 100 Awards
    • 2020 Winners
    • Winner Archive
  • Resources
    • Digital Issues
    • Podcasts
    • Subscribe
  • Global Funding Forecast
  • Webinars

Anthropogenic Groundwater Extraction Impacts Climate

By R&D Editors | January 9, 2017

Groundwater over-exploitation reduces water level and causes drought in Heihe River Valley, northeast China

Anthropogenic groundwater exploitation changes soil moisture and land-atmosphere water and energy fluxes, and essentially affects the ecohydrological processes and the climate system. In over-exploited regions, the terrestrial water storage has been rapidly depleted, causing unsustainability of water use and inducing climate change.

Recently, Prof. Zhenghui Xie and Dr. Yujin Zeng from CAS Institute of Atmospheric Physics, incorporated a scheme of anthropogenic groundwater exploitation into the Community Earth System Model version 1.2, and conducted a series of simulations over global scale to investigate the impacts of anthropogenic groundwater exploitation on the hydrological processes and climate system around the world. “Quantifying the hydrologic and climatic responses to anthropogenic groundwater extraction not only advances our understanding on the hydrological cycle with human intervention, but also benefits effective human water management for sustainable water use,” said Prof. Xie.

They found that groundwater exploitation caused drying in deep soil layers but wetting in upper layers. “A rapidly declining water table is found in areas with the most severe groundwater extraction,” Prof. XIE observed, “The areas include the central United States, the north China Plains and the north India and Pakistan.”

The atmosphere also responded to groundwater extraction, with cooling at the 850 hPa level over the north India and Pakistan and a large area in the north China and central Russia. Increased precipitation occurred in the north China Plains due to increased evapotranspiration from groundwater irrigation. Decreased precipitation occurred in north India because the Indian monsoon and its transport of water vapor were weaker as a result of cooling induced by groundwater use. Local terrestrial water storage was shown to be unsustainable at the current high groundwater extraction rate.

“A balance between reduced water withdrawal and rapid economic development must be achieved in order to maintain a sustainable water use, especially in regions where groundwater is being over-exploited,” Xie suggested.

This research finding has been published in Journal of Climate.

Related Articles Read More >

Argonne webinar to explore the challenges of recycling lithium-ion batteries and solutions
U.S. DOE grants $25M to advance clean hydrogen technologies for electricity generation 
Advanced Ionics secures $4.2M for decarbonization of industrial hydrogen production
MilliporeSigma’s ZooMAb antibodies earns first-ever ACT Label from My Green Lab
2021 R&D Global Funding Forecast

Need R&D World news in a minute?

We Deliver!
R&D World Enewsletters get you caught up on all the mission critical news you need in research and development. Sign up today.
Enews Signup

R&D World Digital Issues

February 2020 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R& magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • 2022 Global Funding Forecast

Copyright © 2022 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • Home Page
  • Topics
    • Aerospace
    • Archeology
    • Automotive
    • Biotech
    • Chemistry
    • COVID-19
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Market Pulse
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
      • Software
    • Semiconductors
  • 2021 R&D 100 Award Winners
    • R&D 100 Awards
    • 2020 Winners
    • Winner Archive
  • Resources
    • Digital Issues
    • Podcasts
    • Subscribe
  • Global Funding Forecast
  • Webinars