Research & Development World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE

Artificial Atoms Make Microwave Photons Countable

By R&D Editors | January 31, 2007

Artificial Atoms Make Microwave Photons Countable

Using artificial atoms on a chip, Yale physicists have taken the next step toward quantum computing by demonstrating that the particle nature of microwave photons can now be detected, according to a report spotlighted in the February 1 issue of the journal Nature.

Quantum theories are often considered to apply best to processes that happen on the smallest scale of atoms and molecules. By making artificial atoms larger — to a size

 
Scanning electron micrograph of an artificial atom (light blue) inside of a transmission line cavity (dark blue). The “atom,” composed of over a billion atoms of aluminum, gives a distinct signal for each possible photon number in the cavity. The theoretical prediction (color plot) was verified by these experiments. Image courtesy of Schuster/Yale 

that is nearly visible — and using microwaves as the source of energy, the collaborative research from the laboratory of Professor Robert Schoelkopf and the theory group of Professor Steven Girvin in the departments of Applied Physics and Department of Physics at Yale created an electronic circuit that stores and measures individual microwave photons. In the process, they bring quantum mechanics to a larger scale and hope to employ it to build new kinds of quantum machines.

“The radiation from a microwave oven or cell phone does not seem to have much in common with light, but like its visible counterpart, microwaves are made of individual photons,” said Schoelkopf. “A single microwave photon is quite large, extending over one centimeter in length, and yet has one hundred thousand times less energy than even a visible photon. Unlike a camera, which absorbs the light it detects, our measurement preserves the photons for later use.”

“Advances in quantum computing are among the goals of the recently launched Yale Institute of Nanoscience and Quantum Engineering (YINQE), of which Girvin and Schoelkopf are core members,” said Paul Fleury, Dean of Yale Engineering and Director of YINQE. “Such manipulation of single microwave photons is an important step towards realizing a quantum computer, which could exponentially speed up computations of difficult problems in cryptography, quantum physics and chemistry.”

“Much like the children’s game ‘telephone,’ current solid state quantum computing schemes can only make nearest-neighbor interactions. This forces distant quantum bits (qubits) to communicate by passing through many intermediates causing errors,” said lead author David Schuster, a graduate student who completed this work as part of his thesis in January 2007. “Single microwave photons can be used as mobile carriers of quantum information allowing distant qubits to communicate directly, avoiding these problems.”

The measurements they made represent the next step in circuit quantum electrodynamics, a field introduced by the same groups at Yale in 2004 to study quantum optics with microwaves using integrated circuits. According to Girvin, the detector they designed works “as if we made an antenna on an atom.” Their results demonstrate that microwaves are particles because the system gives a response representing a discrete number of interactions of the microwave with the atom.

In addition to circuits, microwaves interact with a variety of physical systems, including atomic spins, molecules, and even nuclei. Single microwave photons can act as a bridge between these naturally occurring quantum systems and fabricated electrical circuits, resulting in a hybrid processor of quantum information. The next phase of the work, according to the authors, is to connect up multiple “atoms”, using the photons to transfer the information between them.

Related Articles Read More >

Satellite data sheds light on wetland health in cloud-covered regions
Alice & Bob outlines roadmap to 100 logical qubits by 2030
Idemitsu expands partnership with Enthought to accelerate battery material innovation
top 25 AI patent winners of 2024
From NVIDIA to SAP: How 25 global AI patent leaders fared in 2024
rd newsletter
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, trends, and strategies in Research & Development.
RD 25 Power Index

R&D World Digital Issues

Fall 2024 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R&D magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • Global Funding Forecast

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE