Research & Development World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE

Artificial Intelligence Accurately Predicts Distribution of Radioactive Fallout

By Institute Of Industrial Science, The University Of Tokyo | July 2, 2018

When a nuclear power plant accident occurs and radioactive material is released, it is vital to evacuate people in the vicinity as quickly as possible. However, it can be difficult to immediately predict where the emitted radioactivity will settle, making it impossible to prevent the exposure of large numbers of people.

A means of overcoming this difficulty has been presented in a new study reported in the journal Scientific Reports by a research team at The University of Tokyo Institute of Industrial Science. The team has created a computer program that can accurately predict where radioactive material that has been emitted will eventually land, over 30 hours in advance, using weather forecasts on the expected wind patterns. This tool enables evacuation plans and other health-protective measures to be implemented if another nuclear accident like in 2011 at the Fukushima Daiichi Nuclear Power Plant were to occur.

This latest study was prompted by the limitations of existing atmospheric modeling tools in the aftermath of the accident at Fukushima; tools considered so unreliable that they were not used for planning immediately after the disaster. In this context, the team created a system based on a form of artificial intelligence called machine learning, which can use data on previous weather patterns to predict the route that radioactive emissions are likely to take.

“Our new tool was first trained using years of weather-related data to predict where radioactivity would be distributed if it were released from a particular point,” lead author Takao Yoshikane says. “In subsequent testing, it could predict the direction of dispersion with at least 85% accuracy, with this rising to 95% in winter when there are more predictable weather patterns.”

“The fact that the accuracy of this approach did not decrease when predicting over 30 hours into the future is extremely important in disaster scenarios,” Takao Yoshikane says. “This gives authorities time to arrange evacuation plans in the most badly affected areas, and to issue guidance to people in specific areas about avoiding eating fresh produce and taking potassium iodide, which can limit the absorption of ingested radioactive isotopes by the body.”

Related Articles Read More >

Will consumer AI hardware be the next R&D battlefield?
Detailed view of a PCR testing kit for SARS-CoV-2 with an epidemiologist in protective gear analyzing samples to detect specific viral areas causing COVID-19 pneumonia --ar 16:9 --style raw --v 6.1 Job ID: 7e698e8b-3ac0-4058-9c69-cb803819f39e
When data goes missing: How poor data management can undermining research reproducibility
OpenAI spends $6.5 billion on Jony Ive-founded startup io
H100 image from NVIDIA
After reportedly pursuing Shanghai R&D site, Nvidia calls U.S. GPU export controls a ‘failure’
rd newsletter
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, trends, and strategies in Research & Development.
RD 25 Power Index

R&D World Digital Issues

Fall 2024 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R&D magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • Global Funding Forecast

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE