Research & Development World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE

Asteroids’ close encounters with Mars

By R&D Editors | November 19, 2013

Image: NASAFor nearly as long as astronomers have been able to observe asteroids, a question has gone unanswered: Why do the surfaces of most asteroids appear redder than meteorites—the remnants of asteroids that have crashed to Earth?

In 2010, Richard Binzel, a prof. of planetary sciences at Massachusetts Institute of Technology (MIT), identified a likely explanation: Asteroids orbiting in our solar system’s main asteroid belt, situated between Mars and Jupiter, are exposed to cosmic radiation, changing the chemical nature of their surfaces and reddening them over time. By contrast, Binzel found that asteroids that venture out of the main belt and pass close to Earth feel the effects of Earth’s gravity, causing “asteroid quakes” that shift surface grains, exposing fresh grains underneath. When these “refreshed” asteroids get too close to Earth, they break apart and fall to its surface as meteorites.

Since then, scientists have thought that close encounters with Earth play a key role in refreshing asteroids. But now Binzel and colleague Francesca DeMeo have found that Mars can also stir up asteroid surfaces, if in close enough contact. The team calculated the orbits of 60 refreshed asteroids, and found that 10% of these never cross Earth’s orbit. Instead, these asteroids only come close to Mars, suggesting that the Red Planet can refresh the surfaces of these asteroids.

“We don’t think Earth is the only major driver anymore, and it opens our minds to the possibility that there are other things happening in the solar system causing these asteroids to be refreshed,” says DeMeo, who did much of the work as a postdoc in MIT’s Dept. of Earth, Atmospheric and Planetary Sciences.

DeMeo and Binzel, along with former MIT research associate Matthew Lockhart, have published their findings in Icarus.

Asteroid roulette
The idea that Mars may shake up the surface of an asteroid is a surprising one: As Binzel points out, the planet is one-third the size of Earth, and one-tenth as massive—and therefore exerts a far weaker gravitational pull on surrounding objects. But Mars’ position in the solar system places the planet in close proximity with the asteroid belt, increasing the chance of close asteroid encounters.

“Mars is right next to the asteroid belt, and in a way it gets more opportunity than the Earth does to refresh asteroids,” Binzel says. “So that may be a balancing factor.”

DeMeo, who suspected that Mars may have a hand in altering asteroid surfaces, looked through an asteroid database created by the International Astronomical Union’s Minor Planet Center. The database currently consists of observations of 300,000 asteroids and their orbits; 10,000 of these are considered near-Earth asteroids.

Over the past decade, Binzel’s group has tracked the brightest of these asteroids, measuring their colors to determine which may have been refreshed recently. For this most recent paper, the researchers looked at 60 such asteroids, mapping out the orbit of each and determining which orbits had intersected with those of Earth or Mars. DeMeo then calculated the probability, over the last 500,000 years, that an asteroid and either planet would have intersected, creating a close encounter that could potentially generate asteroid quakes.

“Picture Mars and an asteroid going through an intersection, and sometimes they’ll both come through at very nearly the same time,” Binzel says. “If they just barely miss each other, that’s close enough for Mars’ gravity to tug on [the asteroid] and shake it up. It ends up being this random process as to how these things happen, and how often.”

Refreshing the face of an asteroid
From their calculations, the researchers found that 10% of their sample of asteroids only cross Mars’ orbit, and not Earth’s. DeMeo explored other potential causes of asteroid refreshing, calculating the probability of asteroids colliding with each other, as well as the possibility for a phenomenon called “spin-up,” in which energy from the sun causes the asteroid to rotate faster and faster, possibly disrupting its surface. From her calculations, DeMeo found no conclusive evidence that either event would significantly refresh asteroids, suggesting that “Mars is the only game in town,” Binzel says.

Although 10% of 60 asteroids may not seem like a significant number, DeMeo notes that given Mars’ small size, the fact that the planet may have an effect on one out of 10 asteroids is noteworthy. “Mars is more powerful than we expected,” she says.

The researchers add that now that Mars has been proven to refresh asteroids, other planets, such as Venus, may have similar capabilities—particularly since Venus is closer in mass to Earth.

Source: Massachusetts Institute of Technology

Related Articles Read More >

LLNL deposits quantum dots on corrugated IR chips in a single step
Aardvark AI forecasts rival supercomputer simulations while using over 99.9% less compute
Physicists create supersolid state of light, blending properties of liquids and solids
Samson Shatashvili, winner of the 2025 Dannie Heineman Prize for Mathematical Physics
Samson Shatashvili awarded 2025 Heineman Prize for Mathematical Physics for quantum field theory advances
rd newsletter
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, trends, and strategies in Research & Development.
RD 25 Power Index

R&D World Digital Issues

Fall 2024 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R&D magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • Global Funding Forecast

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE