Research & Development World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE

Big Data Helps Reveal Key Factors Driving Blood Cell Specification

By R&D Editors | February 29, 2016

By studying six consecutive stages of development and adopting a ‘big data’ approach using computational analyses, researchers studied the behavior of thousands of genes and the factors that regulate them.New research has identified key factors that drive blood cell development by recapitulating this process in a culture dish. Cells with the ability to give rise to blood are normally specified in the early embryo over a number of developmental stages and eventually form blood stem cells that are maintained for life and generate trillions of blood cells every day.

By studying six consecutive stages of development and adopting a ‘big data’ approach using computational analyses, the consortium, led by researchers at the University of Birmingham, alongside teams from the universities of Cambridge, Leeds and Manchester, and funded by the Biotechnology and Biological Sciences Research Council, studied the behavior of thousands of genes and the factors that regulate them.

Their findings, published in Developmental Cell, identified previous unknown regulators of blood cell development, significantly furthering our knowledge of this process. They also explained how regulatory elements in the DNA work together, driving gene expression and the switch of one developmental stage to another.

These data also revealed the minimum requirements for generating blood cells from an unrelated, cultured cell type, a method that is vital for the generation of patient-specific blood cells for regenerative medicine. To reach out to the scientific community and the interested public, group generated a Web site that allows unlimited data access.

The team believes that improved understanding of the key genes that drive the specification of blood cells and how they interact with each other will help to generate the stem cells that could be used to help patients suffering from blood disorders, such as myeloid leukemia.

Professor Constanze Bonifer from the University of Birmingham explained, “We examined how embryonic cells develop towards blood cells by collecting “multi-omics” data from measuring gene activity, changes in chromosome structure and the interaction of regulatory factors with the genes themselves. Our research shows in unprecedented detail how a vast network of interacting genes control blood cell development. It also shows how we can use such data to enhance our knowledge of this process.”

Related Articles Read More >

Why IBM predicts quantum advantage within two years
Aardvark AI forecasts rival supercomputer simulations while using over 99.9% less compute
This week in AI research: Latest Insilico Medicine drug enters the clinic, a $0.55/M token model R1 rivals OpenAI’s $60 flagship, and more
How the startup ALAFIA Supercomputers is deploying on-prem AI for medical research and clinical care
rd newsletter
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, trends, and strategies in Research & Development.
RD 25 Power Index

R&D World Digital Issues

Fall 2024 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R&D magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • Global Funding Forecast

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE