Research & Development World

  • Home Page
  • Topics
    • Aerospace
    • Archeology
    • Automotive
    • Biotech
    • Chemistry
    • COVID-19
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Market Pulse
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
      • Software
    • Semiconductors
  • 2021 R&D 100 Award Winners
    • R&D 100 Awards
    • 2020 Winners
    • Winner Archive
  • Resources
    • Digital Issues
    • Podcasts
    • Subscribe
  • Global Funding Forecast
  • Webinars

Big Data Helps Reveal Key Factors Driving Blood Cell Specification

By R&D Editors | February 29, 2016

By studying six consecutive stages of development and adopting a ‘big data’ approach using computational analyses, researchers studied the behavior of thousands of genes and the factors that regulate them.New research has identified key factors that drive blood cell development by recapitulating this process in a culture dish. Cells with the ability to give rise to blood are normally specified in the early embryo over a number of developmental stages and eventually form blood stem cells that are maintained for life and generate trillions of blood cells every day.

By studying six consecutive stages of development and adopting a ‘big data’ approach using computational analyses, the consortium, led by researchers at the University of Birmingham, alongside teams from the universities of Cambridge, Leeds and Manchester, and funded by the Biotechnology and Biological Sciences Research Council, studied the behavior of thousands of genes and the factors that regulate them.

Their findings, published in Developmental Cell, identified previous unknown regulators of blood cell development, significantly furthering our knowledge of this process. They also explained how regulatory elements in the DNA work together, driving gene expression and the switch of one developmental stage to another.

These data also revealed the minimum requirements for generating blood cells from an unrelated, cultured cell type, a method that is vital for the generation of patient-specific blood cells for regenerative medicine. To reach out to the scientific community and the interested public, group generated a Web site that allows unlimited data access.

The team believes that improved understanding of the key genes that drive the specification of blood cells and how they interact with each other will help to generate the stem cells that could be used to help patients suffering from blood disorders, such as myeloid leukemia.

Professor Constanze Bonifer from the University of Birmingham explained, “We examined how embryonic cells develop towards blood cells by collecting “multi-omics” data from measuring gene activity, changes in chromosome structure and the interaction of regulatory factors with the genes themselves. Our research shows in unprecedented detail how a vast network of interacting genes control blood cell development. It also shows how we can use such data to enhance our knowledge of this process.”

Related Articles Read More >

Unlocking the value of your scientific data
Sofar Ocean debuts Maritime Open Standard, Bristlemouth, at OCEANS 2021
The natural resources industry can no longer afford to be a digital laggard
Cambridge Quantum develops algorithm to accelerate Monte Carlo Integration on quantum computers 
2021 R&D Global Funding Forecast

Need R&D World news in a minute?

We Deliver!
R&D World Enewsletters get you caught up on all the mission critical news you need in research and development. Sign up today.
Enews Signup

R&D World Digital Issues

February 2020 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R& magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • 2022 Global Funding Forecast

Copyright © 2022 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • Home Page
  • Topics
    • Aerospace
    • Archeology
    • Automotive
    • Biotech
    • Chemistry
    • COVID-19
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Market Pulse
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
      • Software
    • Semiconductors
  • 2021 R&D 100 Award Winners
    • R&D 100 Awards
    • 2020 Winners
    • Winner Archive
  • Resources
    • Digital Issues
    • Podcasts
    • Subscribe
  • Global Funding Forecast
  • Webinars