Research & Development World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE

Billion-year-old Bacteria Created

By R&D Editors | November 2, 2011

Billion-year-old Bacteria Created

Billion-year-old Bacteria Created
Evolution: University of Waikato research scientist Dr Jo Hobbs holds the one billion year old Bacillus bacterial enzyme.

University of Waikato researchers have managed to create a billion-year-old bacterial enzyme and then trace its evolution through history, to the modern day.

Associate Professor Vic Arcus and postdoctoral research scientist Dr Jo Hobbs have used new computational techniques to make accurate predictions about the size, shape and composition of proteins from ancient bacteria.

They then coaxed modern bacteria into making these ancient proteins for them, creating a billion-year-old Bacillus bacteria enzyme.

“We’ve been able to make a billion-year-old protein enzyme that actually works in the lab,” says researcher Jo Hobbs.

“The billion-year-old enzyme is from a Precambrian ancestor of a modern bacterium called Bacillus,” explains Dr Arcus.

“To our surprise, the ancient enzyme is very stable at high temperatures and very, very active — seven times more active than a comparable modern enzyme.”

“This means that the Bacillus ancestor most probably lived in a hot, inhospitable environment a billion years ago.”

Tracing Evolution

Along with the billion-year-old enzyme, the team created enzymes that trace the evolution of the organisms from one billion years ago to the present day.

They tested the optimal operating temperature of each enzyme to get an insight into the changing temperate of the environment of the bacteria over time.

“The optimum temperature of the billion-year-old organism is 70 degrees. But during the evolution of these bacteria, they have adapted to cooling temperatures. Today we find Bacillus bacteria in nearly every possible environment — hot pools, garden soil, cool lakes, even in Antarctica,” says Dr Arcus.

“They are the weeds of the bacterial world. Their ability to adapt to a great range of different environments over such long periods of time has been their success on planet Earth.”

The team have had their findings published in the Journal of Molecular Biology and Evolution. 

Related Articles Read More >

Satellite data sheds light on wetland health in cloud-covered regions
Alice & Bob outlines roadmap to 100 logical qubits by 2030
Idemitsu expands partnership with Enthought to accelerate battery material innovation
top 25 AI patent winners of 2024
From NVIDIA to SAP: How 25 global AI patent leaders fared in 2024
rd newsletter
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, trends, and strategies in Research & Development.
RD 25 Power Index

R&D World Digital Issues

Fall 2024 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R&D magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • Global Funding Forecast

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE