Research & Development World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE

“Biological Bandage” Accelerates Wound Healing

By University of Bremen | March 29, 2019

Is the “biological bandage” coming soon? A team of researchers at the University of Bremen led by Professor Dorothea Brüggemann and PhD student Karsten Stapelfeldt has now created a fibrinogen network in the laboratory that promises progress in wound healing. Image: © Kai Uwe Bohn/Universität Bremen

Scientists at the University of Bremen have now developed a three-dimensional protein structure that could help to heal wounds. It is conceivable that one day this structure could be produced as “biological bandage” from the blood of the person who will use it.

Humans are vulnerable: one cut and they bleed. Fortunately, nature has its own solutions at the ready to treat minor injuries at the least: in order to close the wound quickly and enable the healing process, the protein fibrinogen, which is contained in blood plasma, is converted into fibrin and forms nanofibers. The scab develops. The resulting tissue of microscopically fine fibers ensures that the wound closes and also supports healing.

A team of biophysicists from the University of Bremen led by Professor Dorothea Brüggemann and doctoral student Karsten Stapelfeldt has now succeeded in creating such a biological fibrinogen network in the laboratory. The discovery promises new possibilities in wound care in the future.

 “Normally, when you have a wound, you can help yourself with bandages and compresses, which also represent a tissue, albeit a synthetic one,” explains Brüggemann. “Our process enables biological wound dressings that could even be formed from a person’s own blood.”

Put simply, every human being could one day have their own “biological bandage,” which is ideally accepted by the body and has clear advantages in wound care, but also as a coating for implants.

A random discovery under the scanning electron microscope helped the Bremen research team. Doctoral student Karsten Stapelfeldt investigated the self-organization process that turns dissolved proteins into ultrafine fibers that then combine to form tissue.

“Fibers appeared in places we didn’t expect them to,” he says. The research group was interested and focused their research on the formation of fibrinogen networks.

 “In the end, we succeeded in producing a layer several micrometers thick of the natural fibrinogen structure—something that you can actually take charge of. This can become the basis for a ‘natural’ wound dressing—in other words, scabs in a tube,” explains Stapelfeldt.

The “individual bandage,” which is made of our own organic material, was made possible by the Bremen discovery: “There’s never been anything like this before. Maybe one day people will have blood taken as infants in order to have such fibrinogen bandages ‘in stock’ for them,” says Brüggemann. “We see great potential for the future in this discovery.”

This is why the team has filed a European patent application with the help of Bremen patent agency InnoWi GmbH.

The researchers in Brüggemann’s working group still have a lot of work to do before the development comes close to being used in real life: “We will now test how cell cultures react to our fibrinogen networks, how they grow under certain conditions, and what the mechanical stability of the structures is like.”

The scientist heads the Emmy Noether research group for nanoBiomaterials, which is funded by the Deutsche Forschungsgemeinschaft (DFG-German Research Foundation), at the Institute for Biophysics at the university. The Emmy Noether Programme supports particularly qualified junior researchers.

Related Articles Read More >

Floating solar mats clean polluted water — and generate power
Nanodots enable fine-tuned light emission for sharper displays and faster quantum devices
New photon-avalanching nanoparticles could enable next-generation optical computers
New “nose-computer interface” aims to upgrade Rover’s nose for better drug detection methods
rd newsletter
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, trends, and strategies in Research & Development.
RD 25 Power Index

R&D World Digital Issues

Fall 2024 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R&D magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • Global Funding Forecast

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE