Research & Development World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE

Blood Pressure Drugs Halt Pancreatic Cancer Cell Growth

By R&D Editors | April 14, 2008

Researchers at the Kimmel Cancer Center at Thomas Jefferson University in Philadelphia are inching closer to understanding how common blood pressure medications might help prevent the spread of pancreatic cancer. They have found in the laboratory that one type of pressure-lowering drug called an angiotensin receptor blocker inhibits pancreatic cancer cell growth and causes cell death.

In earlier work in the laboratory, Hwyda Arafat, M.D., Ph.D., associate professor of Surgery at Jefferson Medical College, and her team showed that angiotensin receptor blockers may help reduce the development of tumor-feeding blood vessels, a process called angiogenesis. Other studies have linked a lower incidence of cancer with the use of angiotensin blocking therapies. Such drugs, she says, may become part of a novel strategy to control the growth and spread of cancer.

One of these drugs—AT1R (Ang II type 1 receptor) blockers—inhibit the function of the hormone angiotensin II (Ang II) in the pancreas. The receptor is expressed in pancreatic cancer cells. Ang II increases the production of VEGF, a vascular factor that promotes blood vessel growth in a number of cancers. High VEGF levels have been correlated with poor cancer prognosis and early recurrence after surgery. Dr. Arafat’s research team has shown that AngII indirectly causes VEGF expression by increasing AT1R expression.

Dr. Arafat’s group explored the effects of blocking AT1R on the pancreatic cancer cell reproductive cycle and programmed cell death, or apoptosis, and the mechanisms involved. It found that blocking AT1R inhibited pancreatic cancer cell growth and promoted cell death. “This happens through inducing the activity of the gene p53, which controls programmed cell death, and also by inhibiting anti-cell death pathways such as those involving the gene bcl-2.”

Release date: April 14, 2008
Source: Jefferson University Hospitals

Related Articles Read More >

Eli Lilly facility
9 R&D developments this week: Lilly builds major R&D center, Stratolaunch tests hypersonic craft, IBM chief urges AI R&D funding
professional photo of wooly mammoth in nature --ar 2:1 --personalize sq85hce --v 6.1 Job ID: 47185eaa-b213-4624-8bee-44f9e882feaa
Why science ethicists are sounding skepticism and alarm on ‘de-extinction’
ALAFIA system speeds complex molecular simulations for University of Miami drug research
3d rendered illustration of the anatomy of a cancer cell
Funding flows to obesity, oncology and immunology: 2024 sales data show where science is paying off
rd newsletter
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, trends, and strategies in Research & Development.
RD 25 Power Index

R&D World Digital Issues

Fall 2024 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R&D magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • Global Funding Forecast

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE