Research & Development World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE

Breakthrough Paves Way for Affordable Quantum Computers

By R&D Editors | April 13, 2015

Electron wave in a phosphorus atom, distorted by a local electric field.A research team led by the University of New South Wales has encoded quantum information in silicon using simple electrical pulses for the first time, bringing the construction of affordable large-scale quantum computers one step closer to reality.

Lead researcher, UNSW Associate Professor from the School of Electrical Engineering and Telecommunications, says his team had successfully realized a new control method for future quantum computers.

The findings have been published in the open-access journal Science Advances.

Unlike conventional computers that store data on transistors and hard drives, quantum computers encode data in the quantum states of microscopic objects called qubits.

The UNSW team, which is affiliated with the ARC Centre of Excellence for Quantum Computation & Communication Technology, was first in the world to demonstrate single-atom spin qubits in silicon, reported in Nature in 2012 and 2013.

The team has already improved the control of these qubits to an accuracy of above 99% and established the world record for how long quantum information can be stored in the solid state, as published in Nature Nanotechnology in 2014.

It has now demonstrated a key step that had remained elusive since 1998.

“We demonstrated that a highly coherent qubit, like the spin of a single phosphorus atom in isotopically enriched silicon, can be controlled using electric fields, instead of using pulses of oscillating magnetic fields,” explains UNSW’s Dr. Arne Laucht, post-doctoral researcher and lead author of the study.

Associate Professor Morello says the method works by distorting the shape of the electron cloud attached to the atom, using a very localized electric field.

“This distortion at the atomic level has the effect of modifying the frequency at which the electron responds.

Pictured from left: Associate Professor Andrea Morello and Dr. Arne Laucht.“Therefore, we can selectively choose which qubit to operate. It’s a bit like selecting which radio station we tune to, by turning a simple knob. Here, the ‘knob’ is the voltage applied to a small electrode placed above the atom.”

The findings suggest that it would be possible to locally control individual qubits with electric fields in a large-scale quantum computer using only inexpensive voltage generators, rather than the expensive high-frequency microwave sources.

Moreover, this specific type of quantum bit can be manufactured using a similar technology to that employed for the production of everyday computers, drastically reducing the time and cost of development.

The device used in this experiment was fabricated at the NSW node of the Australian National Fabrication Facility, in collaboration with the group led by UNSW Scientia Professor Andrew Dzurak.

Key to the success of this electrical control method is the placement of the qubits inside a thin layer of specially purified silicon, containing only the silicon-28 isotope.

“This isotope is perfectly non-magnetic and, unlike those in naturally occurring silicon, does not disturb the quantum bit,” Associate Professor Morello says.

The purified silicon was provided through collaboration with Professor Kohei Itoh from Keio University in Japan.

Associate Professor Morello is at the School of Electrical Engineering & Telecommunications, UNSW Australia. He is a team leader at the ARC Centre of Excellence for Quantum Computation and   Communication Technology, headquartered at UNSW. The quantum bit device was constructed at UNSW at the Australian National Fabrication Facility, with support from researchers at the University of Melbourne and the Australian National University. The research was funded by the Australian Research Council, the US Army Research Office, the NSW Government, UNSW Australia, and the University of Melbourne.

Release Date: April 13, 2015
Source: University of New South Wales  

Related Articles Read More >

Floating solar mats clean polluted water — and generate power
Nanodots enable fine-tuned light emission for sharper displays and faster quantum devices
New photon-avalanching nanoparticles could enable next-generation optical computers
New “nose-computer interface” aims to upgrade Rover’s nose for better drug detection methods
rd newsletter
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, trends, and strategies in Research & Development.
RD 25 Power Index

R&D World Digital Issues

Fall 2024 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R&D magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • Global Funding Forecast

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE