Research & Development World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE

Breath test for detecting head and neck cancer

By R&D Editors | April 10, 2015

Source: Alain Herzog/EPFLA portable device can detect the presence of certain types of cancer in people’s breath. Tested on patients, the new device was developed in part by EPFL researchers as part of an international collaboration.

Inhale, then exhale. This simple act could now save lives. A technology developed in part at EPFL can quickly identify the presence of a head and neck cancer, such as of the throat or mouth by analysing people’s breath. The new device, equipped with extremely sensitive sensors, has been tested on patients and operates with a computer or even a mobile phone. It’s an innovative tool for the early diagnosis of tumours.

Very few routine exams exist to detect cancer. Yet this disease is the third leading cause of death worldwide. Most tumours are found relatively late, which makes recovery less likely.

Cancer “signals” its presence in human breath

At SAMLAB in Neuchâtel, under the direction of Nico de Rooij, a team of researchers including Frédéric Loizeau, a doctoral student at the time, developed very precise micro-sensors able to distinguish the breath of a healthy patient from that of a sick one. The scientists’ starting point was the observation that human breath contains not only air, but also hundreds of volatile organic compounds (VOCs) whose presence and concentration vary depending on the patients’ state of health. The metabolism of cancerous cells is different from that of healthy cells, and the two types of cells produce different substances in terms of both quantity and typology. As a result, they leave their “signature” in people’s breath

The researchers managed to detect these nuances with the aid of a network of micro-sensors. The technology called MSS was initially developed jointly by EPFL researcher and the late 1986 co-laureate of the Nobel price of physics, Heinrich Rohrer. Each sensor is composed of a silicon disk 500 micrometres in diameter that is covered by a polymer and suspended by four minuscule “bridges” with integrated piezoresistors. When exposed to a gas, the polymer absorbs certain molecules and the disk changes shape. This deformation is detected by the four piezoresistive bridges, which emit an electrical signal. This phenomenon makes it possible to determine the signature of the gas and its concentration. The trick lies in using different polymers on each sensor, in order to obtain an overview of the gas composition.

 “There are already methods for detecting molecules called ‘electronic noses’ on the market. But they have a hard time analyzing very complex gases like human breath,” says Nico de Rooij. “Humidity in particular can disrupt the reading, leading to false positives or false negatives.” With the new sensors, the detection process becomes extremely accurate.

Clinical tests on healthy and sick patients

With the collaboration of the Swiss Nanoscience Institute of the University of Basel, the EPFL researchers were able to test their device on actual patients from the University Hospital of Lausanne (Centre hospitalier universitaire vaudois, CHUV) who were either sick or had undergone surgical treatment for head and neck cancer. The results of these tests showed that the sensors were incredibly effective. A Neuchâtel-based company has already expressed interest in marketing this technology, which has been patented.

Breathe into your smartphone

But the story doesn’t end there for the sensors, which have numerous applications. Recently, the NIMS/MANA research centre in Japan, another partner in the project, connected the sensors to mobile phones. This innovation earned them an award at the Nanotech 2015 event.

This technology is also of interest to biologists. At the University of Neuchâtel, tests are currently being run by the Laboratoire pour la recherche fondamentale et appliquée en écologie chimique in order to analyse the gases given off by plants when they are attacked by certain insects or mushrooms. These gases serve to attract other insects that will protect the plant. The ability to detect this phenomenon early on could allow farmers to react more quickly to an attack and, as a result, use less insecticide.

Source: EPFL

Related Articles Read More >

professional photo of wooly mammoth in nature --ar 2:1 --personalize sq85hce --v 6.1 Job ID: 47185eaa-b213-4624-8bee-44f9e882feaa
Why science ethicists are sounding skepticism and alarm on ‘de-extinction’
ALAFIA system speeds complex molecular simulations for University of Miami drug research
3d rendered illustration of the anatomy of a cancer cell
Funding flows to obesity, oncology and immunology: 2024 sales data show where science is paying off
Health-related innovation in Morocco highlighted by resident inventor patenting activity
rd newsletter
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, trends, and strategies in Research & Development.
RD 25 Power Index

R&D World Digital Issues

Fall 2024 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R&D magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • Global Funding Forecast

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE