Research & Development World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE

Bringing time, space together for universal symmetry

By R&D Editors | January 28, 2016

Associate Professor Joan Vaccaro, from Griffith's Centre for Quantum Dynamics  New research from Griffith University’s Centre for Quantum Dynamics is broadening perspectives on time and space. In a paper published in the prestigious journal Proceedings of the Royal Society A, Associate Professor Joan Vaccaro challenges the long-held presumption that time evolution — the incessant unfolding of the universe over time — is an elemental part of Nature.

In Quantum asymmetry between time and space, she suggests there may be a deeper origin due to a difference between the two directions of time: to the future and to the past.

“If you want to know where the universe came from and where it’s going, you need to know about time,” says Associate Professor Vaccaro.

“Experiments on subatomic particles over the past 50 years ago show that Nature doesn’t treat both directions of time equally.

“In particular, subatomic particles called K and B mesons behave slightly differently depending on the direction of time.

“When this subtle behavior is included in a model of the universe, what we see is the universe changing from being fixed at one moment in time to continuously evolving.

“In other words, the subtle behavior appears to be responsible for making the universe move forwards in time.

“Understanding how time evolution comes about in this way opens up a whole new view on the fundamental nature of time itself.

“It may even help us to better understand bizarre ideas such as traveling back in time.”

According to the paper, an asymmetry exists between time and space in the sense that physical systems inevitably evolve over time whereas there is no corresponding ubiquitous translation over space.

This asymmetry, long presumed to be elemental, is represented by equations of motion and conservation laws that operate differently over time and space.

However, Associate Professor Vaccaro used a “sum-over-paths formalism” to demonstrate the possibility of a time and space symmetry, meaning the conventional view of time evolution would need to be revisited.

“In the connection between time and space, space is easier to understand because it’s simply there. But time is forever forcing us towards the future,” says Associate Professor Vaccaro.

“Yet while we are indeed moving forward in time, there is also always some movement backwards, a kind of jiggling effect, and it is this movement I want to measure using these K and B mesons.”

Associate Professor Vaccaro says the research provides a solution to the origin of dynamics, an issue that has long perplexed science.

Source: Griffith University

Related Articles Read More >

White House fast-tracks nuclear R&D while mandating ‘gold standard science’
LLNL deposits quantum dots on corrugated IR chips in a single step
Aardvark AI forecasts rival supercomputer simulations while using over 99.9% less compute
Physicists create supersolid state of light, blending properties of liquids and solids
rd newsletter
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, trends, and strategies in Research & Development.
RD 25 Power Index

R&D World Digital Issues

Fall 2024 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R&D magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • Global Funding Forecast

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE