Research & Development World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE

Cancer drugs may hold key to treating Down syndrome

By R&D Editors | May 20, 2015

A class of FDA-approved cancer drugs may be able to prevent problems with brain cell development associated with disorders including Down syndrome and Fragile X syndrome, researchers at the Univ. of Michigan Life Sciences Institute have found.

The researchers’ proof-of-concept study using fruit fly models of brain dysfunction was published in eLife. They show that giving the leukemia drugs nilotinib or bafetinib to fly larvae with the equivalent of Fragile X prevented the wild overgrowth of neuron endings associated with the disorder. Meanwhile, the drugs—both tyrosine-kinase inhibitors—did not adversely affect the development or neuronal growth in healthy flies.

“This study proposes a potential therapeutic approach for treating brain disorders associated with dysregulated expression of the Dscam protein, which is seen in both Down syndrome and Fragile X syndrome,” said senior study author Bing Ye, whose lab is in the LSI. Graduate student Gabriella Sterne and postdoctoral fellow Jung Hwan Kim are co-first authors of the paper.

Down syndrome and Fragile X are the two most prevalent genetic causes of intellectual disabilities. Down syndrome is caused by an extra copy of chromosome 21, while Fragile X is caused by a mutation in a single gene. Recent studies by the Ye lab and by researchers at other institutions have pointed to a possible link between the two conditions.

During early development, neurons produce high levels of the proteins encoded by a gene called DSCAM as they undergo an intense period of extending and branching to connect with other neurons. (DSCAM stands for Down Syndrome Cell-Adhesion Molecule.) But problems can occur when Dscam levels don’t go back down.

In flies, when Dscam levels stay high, branches off of the ends of their neurons grow too long and make faulty connections with neighboring neurons. In humans, whose nervous systems and brains are far more complicated, the downstream impacts of Dscam dysregulation have not been fully identified.

In a series of experiments outlined in the study, the researchers showed that the Dscam protein activates another protein known as Abelson tyrosine kinase (Abl). The scientists then took genetically modified flies that produced high levels of Dscam and gave them the cancer drug, which acts by blocking the action of Abl.

In one experiment, directly overexpressing Dscam led to flies with neuron endings (called presynaptic terminals) more than 50% longer than normal. But flies treated with the cancer drug showed only a 15% increase.

In another experiment using a genetic model of Fragile X, the flies had presynaptic terminals almost a third longer than normal, but those that received the drug saw only 3% more terminal growth than the control group.

“Although there’s an amazing amount of similarity between flies and humans, more study is needed before we’ll know if this could be a safe and effective treatment for human patients,” said Ye, who is also an assistant professor in the Dept. of Cell and Developmental Biology at the U-M Medical School.

The next step would be to test the approach in mouse models of these brain disorders. Collaborations with oncologists and pharmaceutical companies will also be essential to ensure Abl inhibitors are safe to use in this context, Ye said.

“This study is also an example of the utility of model organisms,” Ye said. “Fruit flies grow and develop rapidly—and although the behaviors of flies and humans are very different, our neurons grow in much the same way, and the genes controlling this process are usually the same or very similar.”

Source: Univ. of Michigan

Related Articles Read More >

Eli Lilly facility
9 R&D developments this week: Lilly builds major R&D center, Stratolaunch tests hypersonic craft, IBM chief urges AI R&D funding
professional photo of wooly mammoth in nature --ar 2:1 --personalize sq85hce --v 6.1 Job ID: 47185eaa-b213-4624-8bee-44f9e882feaa
Why science ethicists are sounding skepticism and alarm on ‘de-extinction’
ALAFIA system speeds complex molecular simulations for University of Miami drug research
3d rendered illustration of the anatomy of a cancer cell
Funding flows to obesity, oncology and immunology: 2024 sales data show where science is paying off
rd newsletter
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, trends, and strategies in Research & Development.
RD 25 Power Index

R&D World Digital Issues

Fall 2024 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R&D magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • Global Funding Forecast

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE