Research & Development World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE

Cell’s Own Mechanism to Blocking Flu

By R&D Editors | February 13, 2015

To test which virus-fighting proteins could interfere with the spread of an infection, the researchers introduced immune genes individually into cells, before infecting them with Influenza A. Above, all cells’ nuclei appear in blue, infected cells in green. Image: Rockefeller Univ.Viruses are masters of outsourcing, entrusting their fundamental function – reproduction – to the host cells they infect. But it turns out this highly economical approach also creates vulnerability.

Researchers at Rockefeller Univ. and their collaborators have found an unexpected way the immune system exploits the flu virus’ dependence on its host’s machinery to create new viruses capable of spreading infection. This discovery suggests a new approach to combating winter’s most unpleasant and, sometimes, deadly curse: the seasonal flu.

“Influenza A, the virus we studied, relies on a host’s protein-cutting machinery to put the final touches on new viral particles. Our research has shown that the host immune system fights back by turning off this machinery,” says study researcher Charles Rice, head of the Laboratory of Virology and Infectious Disease. “This concept, that a host would inhibit its own protein-cutting enzymes in order to fight off a virus, is entirely new.”

Experiments described today (February 12) in Cell reveal a new function for the well-studied protein known as PAI-1 (plasminogen activator inhibitor 1) as the key to this defensive strategy. PAI-1 shuts down proteases, which are enzymes that break the chemical bonds within protein molecules. PAI-1 is best known for inhibiting proteases involved in the breakdown of blood clots. After seeing evidence of a new role for PAI-1, the researchers found that human and mouse cells unable to properly produce it appeared more vulnerable to infection by influenza A. In experiments, they used the subtype H1N1, a derivative of the 1918 pandemic flu and a member of a large family of flu viruses that include seasonal flu.

A cell infected by a virus releases chemical signals known as interferons, which turn up the volume on a legion of defensive genes. “The hundreds of host proteins produced by these interferon-stimulated genes are like an army. We know that, together, they can effectively defend against a viral infection, but we don’t know how the individual soldiers fight back, particularly those that interfere with later stages of viral replication, when the virus exits the cell and spreads the infection,” says first author Meike Dittmann, a postdoc in the lab. Previous work here and elsewhere has explored inhibitors of the early stages of viral replication.

They started out by testing a large suite of genes activated by interferon. With help from Paul Bieniasz’s Laboratory of Retrovirology at The Rockefeller Univ. and the Aaron Diamond AIDS Research Center, they introduced these individual genes into cells, then infected the cells with the flu. With the knowledge that influenza A’s replication cycle takes about eight hours, they watched to see which genes blocked the ability of influenza to spread. As expected, numerous genes inhibited late stages infection, but one stood out: SERPINE1, the gene that codes for PAI-1.

Given what was already known about PAI-1, Dittmann suspected how it might help cells fight flu.

“A virus attacks a cell using fusion proteins, and if these don’t work properly, new virus particles get out of an infected cell just fine, but they cannot spread the infection to other cells. Proteases activate fusion proteins by clipping them, but on its own influenza A doesn’t have the gene for the protease it needs. As a result, the virus relies on the host proteases to do the job,” Dittmann says.

Subsequent experiments confirmed PAI-1 did indeed prevent the cutting of the fusion protein, known as hemagglutinin, and that high levels of PAI-1 prevented the virus from producing particles capable of spreading the infection. Furthermore, mice that lacked the gene for PAI-1 generally fared worse than their peers when infected with the influenza A virus. Experiments conducted by the team’s collaborators at the MRC National Institute for Medical Research in London used infected tissues cultured from mice’s tracheae to confirm PAI-1’s role in fighting off the infection.

Human cells were the final step. Researchers in Senior Attending Physician and Prof. Jean-Laurent Casanova’s St. Giles Laboratory of Human Genetics combed through a database containing genetic information on patients who had suffered from severe infectious disease to find those with genetic changes that reduced PAI-1. Biopsies taken from these patients had been used to create cell lines, and when cells derived from patients with mutations in SERPINE1 were infected, they accumulated higher loads of the virus than cells derived from people without mutations in the gene.

“While this study was conducted with Influenza A, our results may have broader implications,” Rice says. “PAI-1 is part of a large family of protease inhibitors, and it’s possible that it, or its close relatives, may interfere with the replication of other viruses that don’t carry genes for their own proteases. This suggests that it may be possible to use a PAI-1-like strategy as a treatment for flu, and possibly other viral infections.”

Related Articles Read More >

Eli Lilly facility
9 R&D developments this week: Lilly builds major R&D center, Stratolaunch tests hypersonic craft, IBM chief urges AI R&D funding
professional photo of wooly mammoth in nature --ar 2:1 --personalize sq85hce --v 6.1 Job ID: 47185eaa-b213-4624-8bee-44f9e882feaa
Why science ethicists are sounding skepticism and alarm on ‘de-extinction’
ALAFIA system speeds complex molecular simulations for University of Miami drug research
3d rendered illustration of the anatomy of a cancer cell
Funding flows to obesity, oncology and immunology: 2024 sales data show where science is paying off
rd newsletter
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, trends, and strategies in Research & Development.
RD 25 Power Index

R&D World Digital Issues

Fall 2024 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R&D magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • Global Funding Forecast

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE