Research & Development World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE

Cellular Structure Explains Fate of Stem Cells

By R&D Editors | July 2, 2015

Pictured from left: Drs. Mayu Inaba and Michael Buszczak.UT Southwestern Medical Center scientists collaborating with University of Michigan researchers have found a previously unidentified mechanism that helps explain why stem cells undergo self-renewing divisions but their offspring do not.

Adult stem cells provide a ready supply of new cells needed for tissue homeostasis throughout the life of an organism. Specialized environments called “niches” help to maintain stem cells in an undifferentiated and self-renewing state. Cells that comprise the niche produce signals and growth factors essential for stem cell maintenance. The mechanisms that allow for reception of these signals exclusively by stem cells and not their more specialized progeny remain poorly understood.

“This finding stands to change the way we think about how stem cells and their neighbors communicate with one another,” says Dr. Michael Buszczak, Associate Professor in the Department of Molecular Biology and with the Hamon Center for Regenerative Science and Medicine.

The findings are presented in the journal Nature.

Scientists have been working to understand how the signaling between niches and stem cells works.

“These signals act over a short range, so only stem cells − but not their differentiating progeny − receive the self-renewing signals,” says Buszczak, E.E. and Greer Garson Fogelson Scholar in Medical Research. “The mechanics of this communication were not known. What we discovered was that the stem cells form microtubule-based nanotubes, which extend into the niche. These threadlike nanotubes act like straws to tap into the niche and allow signaling to occur specifically in the stem cell.”

The findings emanate from an active collaboration between the Buszczak lab at UT Southwestern and the lab of Dr. Yukiko Yamashita at the University of Michigan. Yamashita is an Associate Professor of Cell and Developmental Biology at the University of Michigan Life Sciences Institute and a Howard Hughes Medical Institute (HHMI) Investigator.

First author Dr. Mayu Inaba, a Postdoctoral Research Fellow at the Life Sciences Institute and a visiting Senior Fellow in Molecular Biology at UT Southwestern in the Buszczak lab, noticed thin projections linking individual stem cells back to a central hub in the stem cell “niche.” Yamashita looked through her old image files and identified the same connections in numerous images. “I had seen them, but I wasn’t seeing them,” Yamashita says. Inaba worked to further develop the project as a senior research fellow in the Buszczak lab over the last several years.

The findings are important groundwork for understanding how stem cells reproduce and how miscommunication between cells can result in diseases like cancer. Too much stem cell production, for example, can lead to cancerous growth. Too little reproduction can result in inadequate renewal of cells and underlies the aging process.

The long-term goal of Buszczak’s lab is to determine the complete regulatory network that controls both the maintenance of Drosophila stem cells and the differentiation of their daughters. “We hope to use this information as a foundation for understanding how perturbations in normal gene expression programs cause disease,” Buszczak says.

The mission of the Hamon Center for Regenerative Science and Medicine is to impact human health through discoveries of the fundamental mechanisms of tissue formation and repair, and to use this knowledge to develop transformative strategies and medicines to enhance tissue regeneration. The Center is led by Dr. Eric Olson, Chair of Molecular Biology at UT Southwestern.

The research was supported by the HHMI and the MacArthur Foundation.

Release Date: July 1, 2015
Source: UT Southwestern Medical Center 

Related Articles Read More >

Eli Lilly facility
9 R&D developments this week: Lilly builds major R&D center, Stratolaunch tests hypersonic craft, IBM chief urges AI R&D funding
professional photo of wooly mammoth in nature --ar 2:1 --personalize sq85hce --v 6.1 Job ID: 47185eaa-b213-4624-8bee-44f9e882feaa
Why science ethicists are sounding skepticism and alarm on ‘de-extinction’
ALAFIA system speeds complex molecular simulations for University of Miami drug research
3d rendered illustration of the anatomy of a cancer cell
Funding flows to obesity, oncology and immunology: 2024 sales data show where science is paying off
rd newsletter
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, trends, and strategies in Research & Development.
RD 25 Power Index

R&D World Digital Issues

Fall 2024 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R&D magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • Global Funding Forecast

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE