Research & Development World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • Educational Assets
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE

Chemist Proposes ‘Sweaty Analysis’ to Better Secure Electronics

By University at Albany | November 10, 2017

Chemist Jan Halámek is proposing a biometric-based approach to better secure electronic devices. (Photo by Carlo de Jesus)

Jan Halámek believes there is a better method to securing electronic devices – and it relies on our own sweat.

Biometric Authentication:

Halámek, an assistant professor of chemistry at the University at Albany, has released a concept paper in ChemPhysChemthat proposes a new biometric-based authentication approach for unlocking mobile and wearable devices, such as smart phones and smart watches.

The approach relies on analyzing skin secretions – or sweat – to build an amino acid profile that is unique to the devices’ owner. The profile would be stored within the device and used for identification purposes each time an attempt to unlock is made.

“We are developing a new form of security that could completely change the authentication process for electronic devices,” Halámek said. “Using sweat as an identifier cannot be easily mimicked/hacked by potential intruders. It’s close to full-proof.”

Skin secretions contain a large number of metabolites that can be targeted for authentication analysis.

To build a profile, the device would first have a “monitoring period” in which it would continuously measure its owner’s sweat levels at various times of the day. For example, those who work overnight shifts would have a vastly different profile at 2 a.m. than those who work day shifts. Other factors, including age, biological sex, race and physiological state of the individual would also play a role.

Once the profile is developed, the owner would be identified once holding the device or wearing it.

The approach would not only improve on current authentication methods, but also help people with certain disabilities, who may be unable to move their fingers in a specific position to open the device or have a caretaker who is unlocking the device without permission. The device owner would also not have to remember a passcode.

“The current forms of authentication have proven to be less than ideal,” Halámek said. “Passwords and pins can easily be seen over someone’s shoulder and there are many internet tutorials on how to create a fingerprint mold that is capable of opening a device. There’s also issues with facial recognition, which often times does not work correctly.”

Halámek has tested the analysis in his lab with success. The next step is to collaborate with an engineer who can help with implementation.

His co-authors on the paper are Vladimir Privman, a professor at Clarkson University, and UAlbany graduate student Juliana Agudelo.

Catching Criminals:

Halámek’s new concept paper is his first that focuses on cybersecurity, but adds to a growing portfolio of research that involves testing biomarkers to catch criminals.

Over the last two years, Halámek and his research team have been featured in dozens of media outlets across the globe for their forensic discoveries. Some of the largest publications include the New York Times, National Geographic, Scientific American and Chemical and Engineering News.

By testing compounds within physical evidence left behind at a crime scene– like fingerprints or blood residue – Halámek and his team can identify key characteristics of culprits within minutes and without DNA testing. This includes their age range, sex and ethnicity.

“It’s all about the biomarkers when you’re looking for the attributes of a person,” said Halámek. “It’s pure chemistry.”

Halámek’s forensic research is ongoing through numerous collaborations on campus and with researchers from other universities around the nation. His lab was also recently awarded with a three-year grant through the Department of Justice/National Institute of Justice to continue developing their fingerprint analysis.

Related Articles Read More >

New nanopore sensor paves the way for fast, accurate, low-cost DNA sequencing
Floating solar mats clean polluted water — and generate power
Nanodots enable fine-tuned light emission for sharper displays and faster quantum devices
New photon-avalanching nanoparticles could enable next-generation optical computers
rd newsletter
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, trends, and strategies in Research & Development.
RD 25 Power Index

R&D World Digital Issues

Fall 2024 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R&D magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • Global Funding Forecast

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • Educational Assets
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE