Research & Development World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE

Clever Intelli-copters Learn as they Fly

By R&D Editors | July 7, 2014

Sheffield, England — Flying robots that can show true autonomy and even a bit of politeness in working together and venturing into hostile environments are being developed by engineers at the University of Sheffield.

The research paves the way for robots to work intelligently alongside humans in ways that are currently familiar only through science fiction films. The robots could play important roles in crisis situations such as search and rescue missions, or operate in environments where it would be dangerous for humans to work.

Using simple flying robots, called Quadcopters, the team, based in Sheffield’s Department of Automatic Control and Systems Engineering (ACSE), has created software that enables the robot to learn about its surroundings using a forward facing camera mounted at the front of the machine.

The robot starts with no information about its environment and the objects within it. By overlaying different frames from the camera and selecting key reference points within the scene, it builds up a 3-D map of the world around it. Other sensors pick up barometric and ultrasonic data, which give the robot additional clues about its environment. All this information is fed into autopilot software to allow the robot to navigate safely, but also to learn about the objects nearby and navigate to specific items.

“We are used to the robots of science fiction films being able to act independently, recognize objects and individuals and make decisions,” explains Professor Sandor Veres, who is leading the research. “In the real world, however, although robots can be extremely intelligent individually, their ability to co-operate and interact with each other and with humans is still very limited.

“As we develop robots for use in space or to send into nuclear environments — places where humans cannot easily go — the goal will be for them to understand their surroundings and make decisions based on that understanding.”

Another key task for these robots is to be able to interact and co-operate with each other without overloading communications networks — a vital ability in emergency situations where networks will already be overloaded.

Programming developed by the team enables the Quadcopters to work out how to ‘politely’ fly past each other without colliding. The robots start off flying at the same altitude and then need to collaborate to work out which robot would fly higher and which would fly lower so they are able to pass.

“The learning process the robots use here is similar to when two people meet in the street and need to get round each other,” explains ACSE research fellow, Dr Jonathan Aitken. “They will simultaneously go to their left or right until they coordinate and avoid collision.”

The researchers used a computer concept called game theory to program the quadcopters. In this framework, each robot is a player in the game and must complete its given task in order to ‘win’ the game.

If the robots play the game repeatedly they start to learn each other’s behavior. They can then perform their task successfully — in this case getting past the other robot — by using previous experience to estimate the behavior of the other robot.

“These simple tasks are part of a major research effort in the field of robotics at Sheffield University,” says Professor Veres. “The next step is to extend the programming capability so that multiple robots can collaborate with each other, enabling fleets of machines to interact and collaborate on more complex tasks.”

Video: http://www.youtube.com/watch?v=u-j1x-QQuwo

To find out more about Engineering in Sheffield, visit: http://www.shef.ac.uk/faculty/engineering/

Related Articles Read More >

Satellite data sheds light on wetland health in cloud-covered regions
Alice & Bob outlines roadmap to 100 logical qubits by 2030
Idemitsu expands partnership with Enthought to accelerate battery material innovation
top 25 AI patent winners of 2024
From NVIDIA to SAP: How 25 global AI patent leaders fared in 2024
rd newsletter
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, trends, and strategies in Research & Development.
RD 25 Power Index

R&D World Digital Issues

Fall 2024 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R&D magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • Global Funding Forecast

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE