Research & Development World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE

Climate Change May Make the Arctic Tundra a Drier Landscape

By Dartmouth College | May 24, 2019

Imagery time series example demonstrating large lake (top row) and small lake (bottom row) area change at different locations across the study region of Kangerlussuaq, Greenland, from 1969 to 2017. Blue contours indicate delineated water body margins. Image is Figure 3 from the study. Credit Figure prepared by Rebecca Finger Higgens. Imagery courtesy of Planet Labs, Inc.

With climate change, the Arctic tundra is likely to become drier. Lakes may shrink in size and smaller lakes may even disappear according to a new Dartmouth study. In western Greenland, Kangerlussuaq experienced a 28 percent decrease in the number of smaller lakes (those less than 10,000 square meters) and a 20 percent decrease in total area from 1969 to 2017. Many of the lakes that had disappeared in 1969 have since become vegetated. The findings are published in the Journal of Geophysical Research: Biogeosciences.

“Lake drying may be one of the most significant consequences of Arctic climate change given that the majority of the world’s lakes are in high latitudes,” explained lead author Rebecca Finger Higgens, a graduate student in the ecology, evolution, ecosystems and society program at Dartmouth. “Much of the drying of lakes in Kangerlussuaq has been occurring from 1985 until now, a period during which we’ve also seen a 2.5 Celsius increase in the mean annual temperature. Our results demonstrate that warmer temperatures in western Greenland over the past 30 years have accelerated lake decline,” she added.

Finger Higgens first noticed that the Arctic landscape seemed to be getting drier in 2015 while doing fieldwork outside of Kangerlussuaq, Greenland. From 2015 to 2017, she served as a Joint Science Education Program (JSEP) graduate fellow during which she spent over six months conducting research in Kangerlussuaq. She started compiling collections of satellite and aerial imagery of lakes in Greenland gathered in the 1960s and 1980s and weather data to track changes over time.

Images of lakes in Kangerlussuaq were sourced from: declassified satellite CORONA imagery from the Cold War, which is available through the U.S. Geological Survey; an aerial survey by the Danish Government in Greenland, which is available through the National Oceanic and Atmospheric Administration; and satellite imagery from summer 2017 by Planet Labs, Inc. Temperature and precipitation data for Kangerlussuaq obtained by the Danish Meteorological Institute during 1971 to 2017 was also used.

In analyzing the imagery, the team wanted to determine why some lakes visible in 1969 weren’t visible in 2017. For a lake to be classified as disappeared, it had to have dried (be vegetated or non-vegetated) and be smaller than 100 square meters. The team found three possible reasons as to why some lakes weren’t visible in 2017: vegetation had come in and recolonized the area; the lake water was still present but too small to be detected by their threshold; or the lake remained but was just dry and not vegetated. Most of the lakes in the study which had disappeared were dry and vegetated.

While smaller lakes in Kangerlussuaq appeared to be especially susceptible to lake decline, larger lakes also saw a decline with a 21 percent decrease in lake count and a 2 percent decrease in surface area. The rapid thawing of permafrost may contribute to the draining of some larger lakes in the future. Warmer winters and drier summers are likely to accelerate losses in lakes, as the researchers found that evapotranspiration rates were higher during June, July and August. The study explains that these rates may be “exacerbated by longer snow- and ice-free periods during the summer.”

“As smaller lakes and wetlands disappear in the Arctic, the habitat of aquatic organisms and other animals is likely to be jeopardized,” said Finger Higgens. “The Arctic is home to many bird species that migrate north to breed, especially waterfowl. With declines in wetlands, we may see some declines in goose populations in this area.”

In addition, a drier Arctic may also increase the vulnerability to soil erosion, insect outbreaks, tundra fires and other phenomenon associated with drought-like conditions.

Rebecca A. Finger Higgens is available for comment at: [email protected]. The study was co-authored by Jonathan W. Chipman, David A. Lutz, Lauren E. Culler, Ross A. Virginia, and Laura A. Ogden at Dartmouth.

Related Articles Read More >

Floating solar mats clean polluted water — and generate power
New AI model offers faster, adaptive CO₂ retrieval from satellite data
8 major R&D moves this week: Samsung invests record $24B while Porsche cuts 3,900 jobs
Ex-Google AI team launches “Generation,” an AI-driven fragrance venture
rd newsletter
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, trends, and strategies in Research & Development.
RD 25 Power Index

R&D World Digital Issues

Fall 2024 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R&D magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • Global Funding Forecast

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE