Research & Development World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • 2025 R&D 100 Award Winners
    • 2025 Professional Award Winners
    • 2025 Special Recognition Winners
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
  • Resources
    • Research Reports
    • Digital Issues
    • Educational Assets
    • R&D Index
    • Subscribe
    • Video
    • Webinars
    • Content submission guidelines for R&D World
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE

Cloth simulation requires six months of computing time

By R&D Editors | July 24, 2013

It would be impossible to compute all of the ways a piece of cloth might shift, fold and drape over a moving human figure. But after six months of computation, researchers at Carnegie Mellon University and the University of California, Berkeley, are pretty sure they’ve simulated almost every important configuration of that cloth.

“I believe our approach generates the most beautiful and realistic cloth of any real-time technique,” said Adrien Treuille, associate professor of computer science and robotics at Carnegie Mellon.

To create this cloth database, the team took advantage of the immense computing power available in the cloud, ultimately using 4,554 central processing unit (CPU) hours to generate 33 gigabytes of data.

Treuille said this presents a new paradigm for computer graphics, in which it will be possible to provide real-time simulation for virtually any complex phenomenon, whether it’s a naturally flowing robe or a team of galloping horses.

Doyub Kim, a former postdoctoral researcher at Carnegie Mellon, will present the team’s findings this week at SIGGRAPH 2013, the International Conference on Computer Graphics and Interactive Techniques, in Anaheim, Calif.

Real-time animations of complex phenomena for video games or other interactive media are challenging. A massive amount of computation is necessary to simulate the behavior of some elements, such as cloth, while good computer models simply don’t exist for such things as body motion. Nevertheless, data-driven techniques have made complex animations possible on ordinary computers by pre-computing many possible configurations and motions.

“The criticism of data-driven techniques has always been that you can’t pre-compute everything,” Treuille said. “Well, that may have been true 10 years ago, but that’s not the way the world is anymore.”

Today, massive computing power can be accessed online at relatively low cost through services such as Amazon. Even if everything can’t be pre-computed, the researchers set out to see just how much was possible by leveraging cloud computing resources.

In the simulations in this study, the researchers focused on secondary cloth effects—how clothing responds to both the human figure wearing the clothes, as well as to the dynamic state of the cloth itself.

Kim said to explore this highly complex system, the researchers developed an iterative technique that continuously samples the cloth motions, automatically detecting areas where data is lacking or where errors occur. For instance, in the study simulations, a human figure wore the cloth as a hooded robe; after some gyrations that caused the hood to fall down, the animation would show the hood popping back onto the figure’s head for no apparent reason. The team’s algorithm automatically identified such errors and explored the dynamics of the system until the error was eliminated.

Kim said with many video games now online, it would be possible to use such techniques to continually improve the animation of games. As play progresses and the animation encounters errors or unforeseen motions, it may be possible for a system to automatically explore those dynamics and make necessary additions or corrections.

Though the research yielded a massive database for the cloth effects, Kim said it was possible to use conventional techniques to compress the tens of gigabytes of raw data into tens of megabytes, a more manageable file size that nevertheless preserved the richness of the animation.

In addition to Treuille and Kim, the research team included CMU Assistant Professor of Computer Science Kayvon Fatahalian, and, from Berkeley, James F. O’Brien, professor of computer science and engineering, Woojong Koh, a Ph.D. student, and Rahul Narain, a post-doctoral researcher.

Project website

SIGGRAPH 2013

Source: Carnegie Mellon Univ.

Related Articles Read More >

JWST spots a 6-mile moon hiding in Uranus’ rings
DNA microscope offers new 3D view of organisms from the inside out
A tale of two industries: How manufacturing and medical imaging experts can learn from each other
Dark energy camera captures the glittering galaxies of the Antlia Cluster
rd newsletter
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, trends, and strategies in Research & Development.
RD 25 Power Index

R&D World Digital Issues

Fall 2024 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R&D magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Sign up for R&D World’s newsletter
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • Global Funding Forecast

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • 2025 R&D 100 Award Winners
    • 2025 Professional Award Winners
    • 2025 Special Recognition Winners
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
  • Resources
    • Research Reports
    • Digital Issues
    • Educational Assets
    • R&D Index
    • Subscribe
    • Video
    • Webinars
    • Content submission guidelines for R&D World
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE