Research & Development World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE

Color Sensor Compound for Anions Discovered

By R&D Editors | August 28, 2015

The phosphate yellow structure pictured is an X-ray of a self-assembled capsule, containing 18 separate species, comprising six organic molecules, six copper ions, and six phosphate anions. The phosphate anions are held within the self-assembled system and it is this that gives rise to all the different colors observed with different anions. A chemistry professor at the University of Huddersfield has uncovered a major development in the study of anions, negatively-charged molecules such as chloride, bromide, and nitrate, which have strategic roles within the human body. These molecules can also act as pollutants, some of which are vital to our health whilst others might actually harm us. The chemistry behind the detection of anions is still in its infancy and an easy, reliable, and robust method of detection has eluded chemists … until now.

The University of Huddersfield’s Professor Craig Rice has recently discovered a compound that undergoes a colorimetric response to a whole host of different ions. However, the most remarkable facet of the chemistry is that the detecting species is not made directly by the scientist, but because the response spontaneously “self-assembles” to give a sensor for each specific anion.

“A colorimetric response, which determines the concentration of a chemical element or compound through the aid of a color reagent, is far more desirable,” says Rice, “because as it’s easy to interpret and in this newly-discovered system, a large range of colors are observed ions. For example, anions such as nitrate are brown, sulphate yellow, and perchlorate blue.”

Now, Rice’s discovery could lead to a practical colorimetric system for detecting anions.

Professor Craig RiceIn the chemistry, the resultant self-assembled system — the growing of a large complex molecule from small components — was dependent on which anion was being investigated.

“We found that when we were investigating phosphate,” says Rice, “a capsule was formed from 12 different molecules and it contains six phosphate anions, whereas a nitrate comprised a circular assembly with eight nitrate anions. The phosphate species was yellow and the nitrate green. As a result, a sensor specific to each ion was grown by the molecule itself without any input from the scientist.

The beginning of this work has already been published in the internationally-leading journal Angewandte Chemie. “This work was at an early stage. We are now progressing to demonstrate what is happening and why the colors are different. The results promise to be very important.”

Release Date: August 27, 2015
Source: University of Huddersfield 

 

Related Articles Read More >

IoT
Sensor data, reimagined: When 90% less data can fuel 100x gains in efficiency in AI projects
Sandia Labs joins with other institutions to tackle AI energy challenges with microelectronics research
LG
Stretchable batteries and body-conformable electronics poised to advance in 2025
Critical Spaces Control Platform
Phoenix Critical Spaces Control Platform uses automation to direct airflow
rd newsletter
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, trends, and strategies in Research & Development.
RD 25 Power Index

R&D World Digital Issues

Fall 2024 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R&D magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • Global Funding Forecast

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE