Research & Development World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE

Compact Hyperspectral Imaging at Low Cost

By Association for Computing Machinery | December 5, 2017

A closeup inset that the researchers capture and use as an input image for running their algorithm. Source: ACM SIGGRAPH ASIA

With hyperspectral imaging, photographers can obtain super fine detailed images, capturing the spectrum for each pixel in an image of a scene. This technology has wide reach and is being applied in fields such as military combat, astronomy, agriculture, biomedical imaging and geoscience. Scientists, for instance, rely on hyperspectral imaging to observe and analyze materials for mining and geology, or for various applications in the medical field. However, hyperspectral imaging systems are expensive — ranging from $25,000 to $100,000 — and require complex specialized hardware to operate.

A team of computer scientists from KAIST, South Korea, and Universidad de Zaragoza, Spain, has devised a way for low-cost accurate hyperspectral imaging, ridding of expensive equipment and complex coding. This novel, compact single-shot hyperspectral imaging method captures images using a conventional DSLR camera equipped with just an ordinary refractive prism placed in front of the lens. The new, user-friendly method was tested on a variety of natural scenes, and the results, according to the researchers, compared well with current state-of-the-art hyperspectral imaging systems, achieving quality images without compromising accuracy.

The team will present their new method at SIGGRAPH Asia 2017 in Bangkok, 27 November to 30 November. This annual conference and exhibition showcases the world’s leading professionals, academics and creative minds at the forefront of computer graphics and interactive techniques.

“These hyperspectral imaging systems are generally built for specific purposes such as aerial remote sensing, or military applications, and as such they are not affordable nor practical for ordinary users,” said Min H. Kim, associate professor of computer science at KAIST and a lead author of the study. “Our system requires no advanced skills, and we are able to obtain hyperspectral images at virtually full resolution while making hyperspectral imaging practical.”

Kim’s collaborators include Diego Gutierrez, associate professor at Universidad de Zaragoza; Seung-Hwan Baek, computer science PhD student at KAIST; and Incheol Kim, researcher at KAIST in Min H. Kim’s lab.

A hyperspectral image can be described as a three-dimensional cube. The imaging technique involves capturing the spectrum for each pixel in an image; as a result, the digital images produce detailed characterizations of the scene or object.

Since the researchers’ new setup operates without the typical coded aperture mask and professional setup with large optical components, available spectral cues are limited. To this end, the researchers developed an image formulation model that predicts the perspective projection of dispersion (splitting light into a spectrum), yielding the dispersion direction and magnitude of each wavelength at every pixel. Their technique also comprises a novel calibration method to estimate the spatially varying dispersion of the prism. It enables users to capture spectral information without requiring a large system setup with various optical components.

Lastly, their reconstruction algorithm estimates the full spectral information of a scene from sparse information, addressing edge restoration of the scene being captured, gradient estimation and the spectral resolution of the image.

In the study, the researchers compare the predictions of their dispersion model with those of professional optics simulation software. They place a prism in front of a 50 mm lens of a digital camera, and capture a point at a distance of 700 mm. Dispersion at every pixel is accurately predicted by their method, producing comparable results to professional physical simulation of light transport.

In future work, the team plans to address the system’s current sensitivity to noise as well as performance limitations due to lighting and surfaces without edges of a scene or object.

Related Articles Read More >

DNA microscope offers new 3D view of organisms from the inside out
A tale of two industries: How manufacturing and medical imaging experts can learn from each other
Dark energy camera captures the glittering galaxies of the Antlia Cluster
R&D 100 winner of the day: Automated digital slide scanner, MSP 320
rd newsletter
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, trends, and strategies in Research & Development.
RD 25 Power Index

R&D World Digital Issues

Fall 2024 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R&D magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • Global Funding Forecast

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE