Research & Development World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE

Computers Learn to Recognize Molecules that Can Enter Cells

By R&D Editors | November 15, 2016

Images show various types of curvatures on cell membranes that are conducive to permeability. (Credit: Ernest Lee and Gerard Wong/UCLA)

A team of researchers from UCLA and the University of Illinois at Urbana-Champaign originally set out to discover and design antimicrobial peptides—short chains of amino acids that can kill bacteria by punching holes in their cell membranes.

To do this, they developed a computer program that could differentiate between amino acid sequences that can kill bacteria and those that cannot. However, along the way, the researchers also discovered that the program started to recognize features of peptides that could alter the shape of membranes. This shape-altering feature helps peptides travel through the membrane and into the cell, making it possible for the peptides to carry and deliver medicines directly into diseased cells.

Using a screening method, researchers not only found new peptides that had this property, but they also discovered that many known human proteins, longer chains of amino acids, also had this ability, even though membrane-crossing is not their primary known function. This discovery, published in the Proceedings of the National Academy of Sciences, has a wide range of applications in biomedicine, such as combatting infections and delivering drugs directly into cells.

The UCLA researchers, led by Gerard Wong, a professor of bioengineering, spearheaded the experimental work, while the computational tools were developed in collaboration with Andrew Ferguson, a professor of materials science and engineering at Illinois.

“Using machine learning, we developed a computer program that can differentiate between a peptide sequence that is antimicrobial and one that isn’t antimicrobial,” said Wong, the co-senior author of the project and a member of the California NanoSystems Institute at UCLA. “During this process, we serendipitously discovered a way to differentiate between peptides that permeate membranes and peptides that don’t.”

They studied a class of well-known peptides called antimicrobial peptides, which are proteins that help the immune system by killing bacteria primarily by permeating the membrane.

During their experiments, the researchers found that the program, originally created to recognize anti-microbial peptides, was simultaneously finding peptides that generate saddle-shaped curvature on the cell membrane. This curvature is much more conducive to allowing a puncture through the membrane into the cell.

Using this new tool, the researchers performed a search of possible peptide sequences to find new membrane-active peptides that do not occur naturally, but can be created chemically.

“Not only are we able to design better antimicrobials to combat drug-resistant infections, we can also design peptides to deliver medicines or other cargo into cells, understand how viruses and bacteria bypass membranes, and uncover membrane activity in proteins that previously have not been characterized to have membrane activity,” said Ernest Lee, the paper’s lead author and a student in the UCLA-Caltech Medical Scientist Training Program.

 

Related Articles Read More >

A new wave of metalworking lets semiconductor crystals bend and stretch
SLAC–Stanford team captures protein‑free RNA megastructures in bacteria
Visible‑light photoenzymes craft drug‑relevant β‑lactams and cyclobutanes in ordinary air
SOCMA poll: 59% of specialty chemical firms skip stockpiling despite tariff threat, leaving R&D supply questions
rd newsletter
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, trends, and strategies in Research & Development.
RD 25 Power Index

R&D World Digital Issues

Fall 2024 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R&D magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • Global Funding Forecast

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE