Research & Development World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE

Cray Building $97 Million Supercomputer for U.S.

By R&D Editors | October 12, 2011

Cray Building $97 Million Supercomputer for U.S.

The never-ending global push to build ever faster supercomputers took another step today with Cray’s announcement that it was awarded a contract from U.S. Department of Energy’s Oak Ridge National Laboratory to build a system that could potentially deliver up to 20 petaflops of peak performance, or 20 quadrillion floating operations per second.

Cray said the contract is worth more than $97 million.

This new system, called Titan, is due to be completed by 2013. It is a major upgrade of Oak Ridge’s Jaguar supercomputer, also a Cray system.

Oak Ridge says Jaguar is the fastest supercomputer in the U.S. with a peak performance of 2.33 petaflops.

More in Supercomputers The Titan will be built using GPU and CPU processors. Each compute node on the Jaguar system has two AMD Opteron processors.

The Titan project involves, in part, removing one Opteron processor and replacing it with a Nvidia GPU.

Sumit Gupta, manager of the Telsa GPU business for Nvidia, said the Oak Ridge system may see performance “well north of 20 petaflops” if it is built out to its capability. The Oak Ridge system will have as many as 18,000 GPUs.

“We see this as a step toward the next kind of large system, which is obviously going to be 100 petaflops, moving toward exascale,” said Gupta.

A 20-petaflop system is also being built by IBM for the Lawrence Livermore National Laboratory. The cost of of building that system, dubbed the Sequoia, has not been disclosed. The Sequoia is slated to be completed in in 2012.

Over the past several years, systems makers have begun turning to GPUs to improve supercomputer performance. GPUs, sometimes called co-processors, can boost the performance of simulations.

GPUs have largely been in an experimental phase so far in supercomputing, said Steve Conway, a high performance computing analyst at IDC.

But, he added, the Oak Ridge system “provides an extra measure of confidence about their ability to exploit GPUs.”

Titan will be used by Oak Ridge researchers for “increasing the realism of nuclear simulations,” and “improving the predictive power of climate simulations.” It will also be used to develop and understand “novel nanomaterials for batteries, electronics and other uses,” the lab said.

The limits to building supercomputers include their cost, the amount of power they need, and the ability of applications to scale at such a large size.

Conway said there are only six applications today that can run at a petaflop or over because of the difficulty of scaling software over thousands of processors.

China and Japan have both talked about building a 20 petaflop system.

The fastest system in the world today is Japan’s K Computer, which runs nearly 69,000 eight core Sparc chips and is capable of 8 petaflops.

 

Related Articles Read More >

QED-C outlines road map for merging quantum and AI
Quantum computing hardware advance slashes superinductor capacitance >60%, cutting substrate loss
Hold your exaflops! Why comparing AI clusters to supercomputers is bananas
Why IBM predicts quantum advantage within two years
rd newsletter
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, trends, and strategies in Research & Development.
RD 25 Power Index

R&D World Digital Issues

Fall 2024 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R&D magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • Global Funding Forecast

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE