Research & Development World

  • Home Page
  • Topics
    • Aerospace
    • Archeology
    • Automotive
    • Biotech
    • Chemistry
    • COVID-19
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Market Pulse
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
      • Software
    • Semiconductors
  • 2021 R&D 100 Award Winners
    • R&D 100 Awards
    • 2020 Winners
    • Winner Archive
  • Resources
    • Digital Issues
    • Podcasts
    • Subscribe
  • Global Funding Forecast
  • Webinars

Custom Chemical Factories, Better DNA Technology, Understanding Superconductivity: ICYMI

By R&D Editors | February 8, 2016

In case you missed it (ICYMI), here are some of the stories that made headlines in the world of cleanrooms and nanotechnology in the past week:

The shell of a bacterial microcompartment (or BMC) is mainly composed of hexagonal proteins, with pentagonal proteins capping the vertices, similar to a soccer ball (left). Scientists have engineered one of these hexagonal proteins, normally devoid of any metal center, to bind an iron-sulfur cluster (orange and yellow sticks, upper right). This cluster can serve as an electron relay to transfer electrons across the shell. Introducing this new functionality in the shell of a BMC greatly expands their possibilities as custom-made bio-nanoreactors. Image: Clément Aussignargues/MSU, Cheryl Kerfeld and Markus Sutter/Berkeley LabResearchers at Berkeley Lab have, for the first time, reengineered a building block of a geometric nanocompartment that occurs naturally in bacteria. A metal binding site was introduced to its shell — this will permit electrons to be transferred to and from the compartment, which offers a brand new functionality that greatly expands the potential of nanocompartments to serve as custom-made chemical factories. It’s hoped that this new technology can be used to create high-value chemical products on demand, like medicine.

Scientists in Singapore have developed a more efficient DNA technology to find and treat infectious diseases and cancer. The researchers used existing technology to come up with “aptamer,” a modified single-stranded DNA molecule that’s good for pharmaceutical applications since it’s able to specifically bind to any molecular target in the body such as proteins, viruses, bacteria, and cells.

A magnet levitating above a cuprate high temperature superconductor. Image: Robert Hills/University of WaterlooFinally, an international collaboration led by Canadian scientists has presented new findings that may eventually lead to a theory of how superconductivity initiates at the atomic level. This is an important step in understanding how to harness the potential of materials that could provide lossless energy storage, levitating trains, and ultra-fast supercomputers. These findings represent the most direct experimental evidence to date of electronic nematicity as a universal feature in cuprate high-temperature superconductors.

Related Articles Read More >

‘Self-driving’ lab speeds up research, synthesis of energy materials
Record-breaking, ultrafast devices step to protecting the grid from EMPs
Surprising semiconductor properties revealed with innovative new method
Thermo Scientific Centrios HX offers precise circuit edit solution for fast prototyping
2021 R&D Global Funding Forecast

Need R&D World news in a minute?

We Deliver!
R&D World Enewsletters get you caught up on all the mission critical news you need in research and development. Sign up today.
Enews Signup

R&D World Digital Issues

February 2020 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R& magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • 2022 Global Funding Forecast

Copyright © 2022 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • Home Page
  • Topics
    • Aerospace
    • Archeology
    • Automotive
    • Biotech
    • Chemistry
    • COVID-19
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Market Pulse
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
      • Software
    • Semiconductors
  • 2021 R&D 100 Award Winners
    • R&D 100 Awards
    • 2020 Winners
    • Winner Archive
  • Resources
    • Digital Issues
    • Podcasts
    • Subscribe
  • Global Funding Forecast
  • Webinars