Research & Development World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE

Dancing Droplets

By R&D Editors | June 25, 2015

With ultrasound, represented by curved red and blue lines, ETH Zurich researchers move micro-droplets for sorting and analysis. (Scheme: ETH Zurich/Ivo Leibacher)Just as the size of transistors continues to decrease, laboratories are also expected to shrink until they eventually fit on a chip. ETH Zurich researchers have developed a system of using sound waves to move, merge, or sort minuscule droplets with reagents or cells in a controlled manner.

Laboratory experiments today tend to be wasteful. For example, in order to conduct diagnostic tests, liquids are mixed together in reaction vessels when all this task requires is a few nanoliters of liquids. With miniaturization, it would be possible to have a higher throughput with less consumption of materials. When attempting to compress an entire experiment into the size of a chip, known as “Lab on a Chip,” there is one key question: how can minuscule amounts of liquid or individual cells be moved, merged and assessed in a controlled way?

Read more: “Lab On a Chip” Technology Makes Medicine Cheaper, Smaller, Quicker

Ivo Leibacher and Peter Reichert, doctoral students at the Institute of Mechanical Systems, developed a system to move tiny droplets under the guidance of ETH Professor Jürg Dual. The concept is based on acoustophoresis, which uses a, ultrasonic standing wave to move aqueous droplets through a carrier liquid of oil on a silicon-glass chip. The droplets, which have a diameter of 50 to 250 micrometers, cannot mix with the carrier liquid, nor can they evaporate.

“On this scale, the droplets are very stable because they are held together by the surface tension,” Leibacher explains.

When the ultrasonic standing waves are applied, the droplets move to the node of the wave. This means researchers can place two different droplets in both sides of the channel to merge them in a controlled manner. Changing the frequency, on the other hand, guides targeted drops with, for example, a light signal into a branched-off channel. By separating them in this way, they can be sorted and analyzed after the conclusion of the experiment.

“One of the advantages of our technology is its high biocompatibility and versatility,” says Reichert. Previous methods in which researchers manipulated individual cells on a tiny scale resulted in cases of cells being damaged. This method can be used for cells as well as for DNA, reagents, and chemicals.

“We hope this technology will become a valuable part of laboratory equipment, allowing for experiments in high throughput with minimal consumption,” says Leibacher. The researchers have filed a patent application for the method, which has been recently published in the Lab on a Chip journal.

Release Date: June 21, 2015
Source: ETH Zurich 

Related Articles Read More >

TSMC’s N3P hits mass production, with N3X customer sampling slated for Q3–Q4 2025a
7 major R&D developments this week: Tariff uncertainty persists, Pfizer sells campus, Scania acquires Northvolt unit
While Trump tariffs spare phones/PCs, R&D could faces GPU cost pressures
Why IBM predicts quantum advantage within two years
rd newsletter
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, trends, and strategies in Research & Development.
RD 25 Power Index

R&D World Digital Issues

Fall 2024 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R&D magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • Global Funding Forecast

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE