Research & Development World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE

Data point to role of cellular bioenergetics as a new mechanistic approach to treat immune disorders

By R&D Editors | January 26, 2011

Data point to role of cellular bioenergetics as a new mechanistic approach to treat immune disorders

Plymouth, Mich. ? January 26, 2011 ? Lycera Corporation, a biopharmaceutical company pioneering an innovative approach to developing novel oral medicines to treat autoimmune diseases, today announced positive data from the University of Michigan demonstrating the role of bioenergetics in selectively inhibiting pathogenic lymphocytes while preserving and enhancing the normal immune system. The findings, published online today in Science Translational Medicine, support Lycera’s promising novel therapeutic approach to treating a broad spectrum of immune diseases.

Cellular bioenergetics is a field of biology focused on studying how energy is made and utilized in living systems in both normal, healthy cells and disease-causing cells. Lycera’s bioenergetics program is focused on developing orally available small molecules that exploit bioenergetic abnormalities in pathologically activated lymphocytes and result in the selective silencing of these cells, while keeping healthy immune cells intact.

The data show that bioenergetic and redox properties of alloreactive T cells differentiate them from other proliferating cells and can be exploited pharmacologically to arrest graft-versus-host disease (GVHD) in mice. In the study, treatment with Lycera’s prototype compound Bz-423, a first-in-class F1F0-ATP synthase inhibitor, induced selective apoptosis of alloreactive donor T cells and reversed GVHD in several bone marrow transplantation models without affecting hematopoietic stem cell engraftment, immune reconstitution or normal resting lymphocytes.

“The preclinical data suggest that alloreactive T cells rely primarily on oxidative phosphorylation for their energy, challenging the current paradigm that activated T cells meet their increased demands for energy through aerobic glycolysis,” said lead author Gary D. Glick, Ph.D., Lycera founder and chief scientific officer, and Werner E. Bachmann Collegiate Professor of Chemistry at the University of Michigan. “This difference, along with the phenotype of T cells, provides a mechanistic basis for the specificity of Bz-423 to eliminate disease causing cells. The specificity and the ability to preserve normal immune reconstitution differentiate Bz-423 from high dose systemic steroids, the current standard of treatment for GVHD. Efficacy has also been demonstrated in autoimmune disease models where pathogenic cells have similar bioenergetic characteristics. The robust body of preclinical research is very compelling, and we look forward to entering the clinic with our lead compound in Lycera’s bioenergetics program this year.”

The researchers tested the potential of Bz-423 to halt the progress of established GVHD in two allogeneic bone marrow transplantation models. Treatment with Bz-423 significantly reduced GVHD clinical scores after one week and improved survival in mice compared to controls treated with vehicle (75% vs. 29%, p< 0.02). Similar improvement in survival was seen when treatment was continued for 10 weeks (74% vs. 29%, p=0.02). In another aggressive model of GVHD using a fully allogeneic donor/recipient strain combination, Bz-423 treatment for seven weeks again significantly reduced all clinical and histological parameters of disease. Bz-423 did not impair immune reconstitution in either the thymus or spleen and all the mice treated with the drug showed complete donor bone marrow engraftment. Additionally, the compound’s favorable toxicity profile is consistent with other studies and with the normal bioenergetic and redox profile of rapidly proliferating bone marrow cells (basal rates of oxygen consumption, normal levels of anti-oxidants and stable mitochondrial membrane potential).

SOURCE

Related Articles Read More >

Why IBM predicts quantum advantage within two years
Aardvark AI forecasts rival supercomputer simulations while using over 99.9% less compute
This week in AI research: Latest Insilico Medicine drug enters the clinic, a $0.55/M token model R1 rivals OpenAI’s $60 flagship, and more
How the startup ALAFIA Supercomputers is deploying on-prem AI for medical research and clinical care
rd newsletter
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, trends, and strategies in Research & Development.
RD 25 Power Index

R&D World Digital Issues

Fall 2024 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R&D magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • Global Funding Forecast

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE