Research & Development World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE

Death of a Star in 3-D: New models show how supernovae obtain their shape

By R&D Editors | May 21, 2010

Death of a Star in 3-D: New models show how supernovae obtain their shape

 

Three-dimensional explosion simulation at about 0.5 seconds after core ignite
Three-dimensional explosion simulation at about 0.5 seconds after core ignited. The bluish, almost transparent surface is the shock front with an average radius of 1900 km. Courtesy of MPA

Researchers have reproduced the asymmetries and fast-moving iron clumps of observed supernovae by complex computer simulations in all three dimensions. To this end, they successfully followed the outburst in their models consistently from milliseconds after the onset of the blast to the demise of the star several hours later.

Massive stars end their lives in gigantic explosions, so called supernovae, and can become — for a short time — brighter than a whole galaxy, which is made up of billions of stars. Although supernovae have been studied theoretically by computer models for several decades, the physical processes happening during these blasts are so complex that, until now, astrophysicists could only simulate parts of the process and, so far, only in one or two dimensions. Researchers at the Max Planck Institute for Astrophysics in Garching have now carried out the first fully three-dimensional computer simulations of a core collapse supernova over a timescale of hours after the initiation of the blast. They, thus, could answer the question of how initial asymmetries, which emerge deep in the dense core during the very early stages of the explosion, fold themselves into inhomogeneities observable during the supernova blast.

While the great energy of the outburst makes these stellar explosions visible far out into the Universe, they are relatively rare. In a galaxy of the size of our Milky Way, on average only one supernova will occur in 50 years. About 20 years ago, a supernova could be seen even with the naked eye: SN 1987A in the Tarantula Nebula in the Large Magellanic Cloud, our neighboring galaxy. This relative closeness — “only” about 170,000 light years away — allowed many detailed observations in different wavelength bands over weeks and even months.

A star dies in 3-D
snap-shots show the outward mixing of certain elements in the supernova explosion
the shock has broken out of the stellar surface
surfaces denote the outermost radial locations
A star dies in 3-D: These snap-shots show the outward mixing of certain elements in the supernova explosion from two different viewing directions, 350 seconds after core ignition in the upper two panels and after 9000 seconds in the lower two panels, when the shock has broken out of the stellar surface. The surfaces denote the outermost radial locations of carbon (green), oxygen (red), and nickel (blue) with a constant mass fraction. Courtesy of MPA

SN 1987A turned out to be a core-collapse supernova, a so-called Type II event. It occurs when a massive star, which is at least nine times heavier than the sun, has burned almost all its fuel. The fusion engine in the center of the star begins to stutter, triggering an internal collapse and, thus, a violent explosion of the entire star. In the case of SN 1987A, the star had about 20 solar masses at its birth.

SN 1987A is probably the best studied supernova, and it is still a great challenge to develop and refine models of what was happening inside the dying star to produce its emission of radiation. One of the astonishing and unexpected discoveries in SN 1987A and many subsequent supernovae was the fact that nickel and iron — heavy elements that are formed near the center of the explosion — are mixed outward in big clumps into the hydrogen shell of the disrupted star. Nickel bullets were observed to propagate at velocities of thousands of kilometers per second, much faster than the surrounding hydrogen and much faster than predicted by simple hydrodynamic calculations in one dimension (1-D), i.e., only studying the radial profile from the center outward.

In fact, it turned out that the brightness evolution (the so-called light curve) of SN 1987A and of similar core-collapse supernovae can only be understood if large amounts of heavy core material (in particular radioactive nickel) are mixed outward into the stellar envelope, and light elements (hydrogen and helium from the envelope) are carried inward to the core.

The details of supernova explosions are very difficult to simulate, not only because of the complexity of the physical processes involved, but also because of the duration and range of scales — from hundreds of meters near the center to tens of millions of kilometres near the stellar surface — that need to be resolved in ultimately three-dimensional (3-D) computer models. Previously conducted simulations in two dimensions (2-D, i.e., with the assumption of axial symmetry) indeed showed that the spherical shell structure of the progenitor star is destroyed during the supernova blast and large-scale mixing takes place. But the real world is three-dimensional and not all observational aspects can be reproduced by 2-D models.

The new computer models of the team at the Max Planck Institute for Astrophysics can now, for the first time, simulate the complete burst in all three dimensions, from the first milliseconds after the explosion is triggered in the core to a time three hours later, when the shock breaks out of the progenitor star.

“We found substantial deviations in our 3-D models compared to previous work in 2-D,” says Nicolay Hammer, the lead author of the paper, “especially, the growth of instabilities and the propagation of clumps differ. These are not just minor variations; this effect determines the long-time evolution and, ultimately, the extent of mixing and observable appearance of core-collapse supernovae.”

In the 3-D simulations, metal-rich clumps have much higher velocities than in the 2-D case. These “bullets” expand much more rapidly, overtaking material from the outer layers.

“With a simple analytic model, we could demonstrate that the different geometry of the bullets, toroidal versus quasi-spherical, can explain the differences observed in our simulations,” explains co-author Thomas Janka. “While we think that the differences between the 2-D and 3-D models that we found are probably generic, many features will depend strongly on the structure of the progenitor star, the overall energy and the initial asymmetry of the blast.”

“We hope that our models, in comparison to observations, will help us to understand how stellar explosions start and what causes them,” adds Ewald Müller, the third author of the paper.

Investigating a wider variety of progenitor stars and initial conditions will, therefore, be the focus of future simulation work. In particular, a detailed model that reproduces all observational features of SN 1987A still remains a challenge.

Citation:  N.J. Hammer, H.-Th. Janka, E. Müller. “Three-dimensional simulations of mixing instabilities in supernova explosions,” Astrophysical Journal 714 (2010) 1371-1385 

Related Articles Read More >

Berkeley Lab’s Dell and NVIDIA-powered ‘Doudna’ supercomputer to enable real-time data access for 11,000 researchers
QED-C outlines road map for merging quantum and AI
Quantum computing hardware advance slashes superinductor capacitance >60%, cutting substrate loss
Hold your exaflops! Why comparing AI clusters to supercomputers is bananas
rd newsletter
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, trends, and strategies in Research & Development.
RD 25 Power Index

R&D World Digital Issues

Fall 2024 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R&D magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • Global Funding Forecast

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE