Research & Development World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • Educational Assets
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE

Discovery May Aid Development of Malaria Vaccines and Drugs

By R&D Editors | January 10, 2014

The study provides details that will help scientists design better vaccines and drug treatments for the strain, Plasmodium vivax. (Source: CDC)A form of malaria common in India, Southeast Asia and South America attacks human red blood cells by clamping down on the cells with a pair of proteins, new research at Washington University School of Medicine in St. Louis has revealed.
 
The study provides details that will help scientists design better vaccines and drug treatments for the strain, Plasmodium vivax.
 
“More people live at risk of infection by this strain of malaria than any other,” said senior author Niraj Tolia, PhD, assistant professor of molecular microbiology and of biochemistry and molecular biophysics. “We now are using what we have learned to create vaccines tailored to stop the infectious process by preventing the parasite from attaching to red blood cells.” The finding appears in PLOS Pathogens.
 
The World Health Organization estimates there were more than 200 million malaria cases in 2012. The deadliest form of malaria, Plasmodium falciparum, is most prevalent in Africa. But P. vivax can hide in the liver, re-emerging years later to trigger new infections, and is harder to prevent, diagnose and treat.
 
Earlier studies had suggested that one P. vivax protein binds to one protein on the surface of red blood cells. Tolia’s new study reveals that the binding is a two-step process that involves two copies of a parasite protein coming together like tongs around two copies of a host protein.
 
“It’s a very intricate and chemically strong interaction that was not easily understood before,” Tolia said. “We have had hints that other forms of malaria, including the African strain, may be binding in a similar fashion to host cells, but this is one of the first definitive proofs of this kind of attack.”
 
Tolia suspects blocking any of the proteins with drugs or vaccines will stop the infectious process.
 
“For example, some people have a mutation that eliminates the protein on red blood cell surfaces that P. vivax binds to, and they tend to be resistant to the parasite,” he said. “This is why this strain isn’t prevalent in Africa—evolutionary pressure has caused most of the populations there to stop making this protein.”
 
Tolia also found evidence that other people with immunity to P. vivax have developed naturally occurring antibodies that attach to a key part of the parasite’s binding protein, preventing infection.
 
“The parasite protein is very large, and human antibodies bind to it at many different points along its length,” Tolia explained. “We have observed that the ones that are most effective so far are the antibodies that bind to the protein at the region highlighted by our new research.”
 

Date: January 10, 2014

Source: Washington University School of Medicine 

Related Articles Read More >

5 R&D developments to keep an eye on this week: Solar crash and Trump’s energy pivot meets Musk’s rebellion
Mayo Clinic develops AI tool that can spot 9 dementia types with a single scan
Google DeepMind’s AlphaGenome AI predicts how non-coding DNA can drive disease
Top 10 drugs by patent volume: How biologics build ‘platform empires’ while small molecule create ‘patent thickets’
rd newsletter
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, trends, and strategies in Research & Development.
RD 25 Power Index

R&D World Digital Issues

Fall 2024 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R&D magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • Global Funding Forecast

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • Educational Assets
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE