Research & Development World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE

Discovery Predicts Patient Sensitivity to Brain Cancer Drugs

By R&D Editors | February 7, 2012

A discovery by Van Andel Research Institute (VARI) scientists enables the prediction of patient sensitivity to proposed drug therapies for glioblastoma.

The study investigated glioblastoma models characterized by cell signaling activation and gene amplification for their susceptibility to inhibitors of both the human MET oncogene and the epidermal growth factor receptor (EFGR).
 
In tumor cells, oncogenes are often mutated or expressed at high levels. High MET levels often occur in human tumors, and cells with inappropriate MET signaling produce activity that potently affects the spread of cancer. The signaling is implicated in most types of human cancers and high MET expression often correlates with poor prognosis. Mutations affecting EGFR expression or activity are also linked to cancer.
 
“Because oncogene MET and EGFR inhibitors are in clinical development against several types of cancer, including glioblastoma, it is important to identify predictive markers that indicate patient subgroups suitable for such therapies,” says VARI research scientist Qian Xie, PhD.
 
“Studies have shown that targeting MET signaling can have potent antitumor effects,” says George F. Vande Woude, PhD, head of the VARI Laboratory of Molecular Oncology. “It is important to understand the mechanisms leading to HGF/MET sensitivity and to identify the patient subgroups most likely to benefit from MET-targeted therapeutics.”
 
Because MET and HGF play an integral role in the process of cell survival, growth, blood vessel formation, and metastasis, they are a significant target in the development of anti-cancer drugs.  “Progress in understanding this vital process has led to the successful development of blocking antibodies and a large number of small-molecule MET kinase inhibitors,” says Vande Woude. “Results from recent clinical studies demonstrate that inhibiting MET signaling in several types of solid human tumors has major therapeutic value.”
 
The study was published in the Proceedings of the National Academy of Science.
 
Release Date: Feb. 6, 2012
Source: Van Andel Research Institute  

 

Related Articles Read More >

Eli Lilly facility
9 R&D developments this week: Lilly builds major R&D center, Stratolaunch tests hypersonic craft, IBM chief urges AI R&D funding
professional photo of wooly mammoth in nature --ar 2:1 --personalize sq85hce --v 6.1 Job ID: 47185eaa-b213-4624-8bee-44f9e882feaa
Why science ethicists are sounding skepticism and alarm on ‘de-extinction’
ALAFIA system speeds complex molecular simulations for University of Miami drug research
3d rendered illustration of the anatomy of a cancer cell
Funding flows to obesity, oncology and immunology: 2024 sales data show where science is paying off
rd newsletter
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, trends, and strategies in Research & Development.
RD 25 Power Index

R&D World Digital Issues

Fall 2024 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R&D magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • Global Funding Forecast

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE