Research & Development World

  • Home Page
  • Topics
    • Aerospace
    • Archeology
    • Automotive
    • Biotech
    • Chemistry
    • COVID-19
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Market Pulse
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
      • Software
    • Semiconductors
  • 2021 R&D 100 Award Winners
    • R&D 100 Awards
    • 2020 Winners
    • Winner Archive
  • Resources
    • Digital Issues
    • Podcasts
    • Subscribe
  • Global Funding Forecast
  • Webinars

DLR and Cambridge Quantum partner to use quantum computers to build better battery simulation models

By Heather Hall | May 5, 2021

Cambridge Quantum Computing (CQC) has partnered with the German Aerospace Center (Deutsches Zentrum für Luftund Raumfahrt; DLR) to explore how quantum computing could help create better simulation models for battery development to aid future energy utilization.

The collaboration will see DLR – the national aeronautics and space research center of the Federal Republic of Germany – use CQC’s quantum algorithms for solving partial differential equation (PDE) systems to render a 1D simulation of a lithium-ion battery cell. This lays the groundwork for exploring multi-scale simulations of complete battery cells with quantum computers, which are considered a viable alternative for rendering full 3D models. A multi-scale approach incorporates information from different system levels (for example atomistic, molecular and macroscopic) to make a simulation more manageable and realistic, potentially accelerating battery research and development for a variety of sustainable energy solutions.

Improving battery cells has an important role to play in mobile and portable application, such as smartphones, wearable electronic devices and electric cars, as well as in decentralized solar storage and frequency stabilization of the energy grid. Battery research could also eventually reduce the industry’s reliance on lithium – the material used in commercial batteries.

DLR has previously used classical computer modelling to research a range of different battery types, including lithium ion and beyond-lithium technologies. This is one of the earliest works combining partial differential equation models for battery simulation and near-term quantum computing. Using CQC’s software development framework for execution on NISQ (Noisy Intermediate-Scale Quantum) computers, DLR will render its quantum simulations on an IBM Q quantum computer.

For more information, visit CQC at cambridgequantum.com

 

Tell Us What You Think! Cancel reply

Related Articles Read More >

GIST Scientists develop a universal method for improving the lifespan of li-ion batteries  
New magnesium superionic conductor towards lithium-free solid-state batteries
These energy-packed batteries work well in extreme cold and heat
Argonne webinar to explore the challenges of recycling lithium-ion batteries and solutions
2021 R&D Global Funding Forecast

Need R&D World news in a minute?

We Deliver!
R&D World Enewsletters get you caught up on all the mission critical news you need in research and development. Sign up today.
Enews Signup

R&D World Digital Issues

February 2020 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R& magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • 2022 Global Funding Forecast

Copyright © 2022 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • Home Page
  • Topics
    • Aerospace
    • Archeology
    • Automotive
    • Biotech
    • Chemistry
    • COVID-19
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Market Pulse
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
      • Software
    • Semiconductors
  • 2021 R&D 100 Award Winners
    • R&D 100 Awards
    • 2020 Winners
    • Winner Archive
  • Resources
    • Digital Issues
    • Podcasts
    • Subscribe
  • Global Funding Forecast
  • Webinars