Research & Development World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE

Entropy can lead to order, paving the route to nanostructures

By R&D Editors | July 26, 2012

/sites/rdmag.com/files/legacyimages/RD/News/2012/07/entropy-researchers1x500.jpg

click to enlarge

Computer simulations by University of Michigan researchers Pablo Damasceno, Sharon Glotzer, and Michael Engel have shown how entropy can nudge nanoparticles into organized structures. They can even predict what kinds of structures will form. Photo: Laura Rudich

Researchers trying to herd
tiny particles into useful ordered formations have found an unlikely ally:
entropy, a tendency generally described as “disorder.”

Computer simulations by
University of Michigan scientists and engineers show that the property can
nudge particles to form organized structures. By analyzing the shapes of the
particles beforehand, they can even predict what kinds of structures will form.

The findings, published in Science, help lay the ground rules for
making designer materials with wild capabilities such as shape-shifting skins
to camouflage a vehicle or optimize its aerodynamics.

Physicist and chemical
engineering professor Sharon Glotzer proposes that such materials could be
designed by working backward from the desired properties to generate a
blueprint. That design can then be realized with nanoparticles—particles a
thousand times smaller than the width of a human hair that can combine in ways
that would be impossible through ordinary chemistry alone.

One of the major challenges
is persuading the nanoparticles to create the intended structures, but recent
studies by Glotzer’s group and others showed that some simple particle shapes
do so spontaneously as the particles are crowded together. The team wondered if
other particle shapes could do the same.

“We studied 145
different shapes, and that gave us more data than anyone has ever had on these
types of potential crystal-formers,” Glotzer SAID. “With so much
information, we could begin to see just how many structures are possible from
particle shape alone, and look for trends.”

Using computer code written
by chemical engineering research investigator Michael Engel, applied physics
graduate student Pablo Damasceno ran thousands of virtual experiments,
exploring how each shape behaved under different levels of crowding. The
program could handle any polyhedral shape, such as dice with any number of
sides.

Left to their own devices,
drifting particles find the arrangements with the highest entropy. That
arrangement matches the idea that entropy is a disorder if the particles have
enough space: they disperse, pointed in random directions. But crowded tightly,
the particles began forming crystal structures like atoms do—even though they
couldn’t make bonds. These ordered crystals had to be the high-entropy
arrangements, too.

Entropy Nanostructures 2

Shapes can arrange themselves into crystal structures through entropy alone, new research from the University of Michigan shows. Image credit: P. Damasceno, M. Engel, S. Glotzer

Glotzer explains that this
isn’t really disorder creating order—entropy needs its image updated. Instead,
she describes it as a measure of possibilities. If you could turn off gravity
and empty a bag full of dice into a jar, the floating dice would point every
which way. However, if you keep adding dice, eventually space becomes so
limited that the dice have more options to align face-to-face. The same thing
happens to the nanoparticles, which are so small that they feel entropy’s
influence more strongly than gravity’s.

“It’s all about
options. In this case, ordered arrangements produce the most possibilities, the
most options. It’s counterintuitive, to be sure,” Glotzer said.

The simulation results
showed that nearly 70% of the shapes tested produced crystal-like structures
under entropy alone. But the shocker was how complicated some of these structures
were, with up to 52 particles involved in the pattern that repeated throughout
the crystal.

“That’s an
extraordinarily complex crystal structure even for atoms to form, let alone
particles that can’t chemically bond,” Glotzer said.

The particle shapes
produced three crystal types: regular crystals like salt, liquid crystals as
found in some flat-screen televisions and plastic crystals in which particles
can spin in place. By analyzing the shape of the particle and how groups of
them behave before they crystallize, Damasceno said that it is possible to
predict which type of crystal the particles would make.

“The geometry of the
particles themselves holds the secret for their assembly behavior,” he
said.

Why the other 30% never
formed crystal structures, remaining as disordered glasses, is a mystery.

“These may still want
to form crystals but got stuck. What’s neat is that for any particle that gets
stuck, we had other, awfully similar shapes forming crystals,” Glotzer
said.

In addition to finding out
more about how to coax nanoparticles into structures, her team will also try to
discover why some shapes resist order.

Source: University of Michigan

Related Articles Read More >

KIST carbon nanotube supercapacitor holds capacity after 100,000 cycles
A new wave of metalworking lets semiconductor crystals bend and stretch
LLNL deposits quantum dots on corrugated IR chips in a single step
KATRIN inauguration photo form 2018
Neutrinos pinned below 0.45 eV; KATRIN halves the particle’s mass ceiling
rd newsletter
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, trends, and strategies in Research & Development.
RD 25 Power Index

R&D World Digital Issues

Fall 2024 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R&D magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • Global Funding Forecast

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE