Research & Development World

  • Home Page
  • Topics
    • Aerospace
    • Archeology
    • Automotive
    • Biotech
    • Chemistry
    • COVID-19
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Market Pulse
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
      • Software
    • Semiconductors
  • 2021 R&D 100 Award Winners
    • R&D 100 Awards
    • 2020 Winners
    • Winner Archive
  • Resources
    • Digital Issues
    • Podcasts
    • Subscribe
  • Global Funding Forecast
  • Webinars

Equipping Metallic Components with RFID Chips

By R&D Editors | November 25, 2009

Equipping Metallic Components with RFID Chips 

Equipping Metallic Components with RFID Chips

Up to now, extreme production temperatures made it impossible to equip metallic components with RFID chips during the operating process. At Euromold in Frankfurt, Fraunhofer researchers presented a variation on a process that makes the non-destructive integration of radio chips a reality.

Whether it’s CD packaging, containers or identification cards: RFID tags (radio frequency identification) are increasingly finding their way into everyday life. They make it possible to label objects or goods and identify them automatically by radio frequency. The appropriate scanner can read and process the data contained in the label. “Smart labels” can be affixed to goods under production conditions of up to 100 degrees Celsius. But at higher temperatures — such as with laser fusion — they fall apart: the metal components are being manufactured out of stainless steel powder, using a laser at temperatures in excess of 1400 degrees Celsius. Such production conditions have precluded the use of radio-based identification — until now.

Recently, researchers from the Fraunhofer-Institute for Manufacturing and Advanced Materials IFAM in Bremen developed a new, non-destructive process. They use the “Rapid Manufacturing” method: A machine produces a component based on a three-dimensional CAD model, building it layer-by-layer directly from the computer. The laser melts off the areas of each metal powder layer that are intended to be solid. Next, the building platform is lowered and the process restarts until the component is completed. Fraunhofer scientists can control this process in a manner that allows the RFID to be installed and completely encased by the material.

“This new process finally puts the intelligence into the metal component. You can store critical information in the radio tags, like the serial number or the manufacture date. So, for example, companies now can make their top-grade replacement parts tamper-proof and resistant to fraud,” explains project manager Claus Aumund-Kopp.

If someone tries to remove the chip, they will wind up destroying it in the attempt. And soon, it will be possible to do more than just read the identification code. Conceivably, it might even be possible to store information during the period of usage. Experts also envision the potential of this process as it relates to sensors or actuators: With the aid of temperature or expansion sensors, it may be possible to record data on thermal or mechanical stresses on the components.

In addition, the new Fraunhofer Additive Manufacturing Alliance presents technologies and services along the entire value creation chain. This includes everything from additive manufacturing technologies and tools manufacturing through to tooling, repair and maintenance. Ten institutes have joined together under the aegis of the alliance.

For further information: www.generativ.fraunhofer.de.

Related Articles Read More >

Unlocking the value of your scientific data
Sofar Ocean debuts Maritime Open Standard, Bristlemouth, at OCEANS 2021
The natural resources industry can no longer afford to be a digital laggard
Cambridge Quantum develops algorithm to accelerate Monte Carlo Integration on quantum computers 
2021 R&D Global Funding Forecast

Need R&D World news in a minute?

We Deliver!
R&D World Enewsletters get you caught up on all the mission critical news you need in research and development. Sign up today.
Enews Signup

R&D World Digital Issues

February 2020 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R& magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • 2022 Global Funding Forecast

Copyright © 2022 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • Home Page
  • Topics
    • Aerospace
    • Archeology
    • Automotive
    • Biotech
    • Chemistry
    • COVID-19
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Market Pulse
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
      • Software
    • Semiconductors
  • 2021 R&D 100 Award Winners
    • R&D 100 Awards
    • 2020 Winners
    • Winner Archive
  • Resources
    • Digital Issues
    • Podcasts
    • Subscribe
  • Global Funding Forecast
  • Webinars