Research & Development World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE

Evolving microbes help turn bio-oil into advanced biofuels

By R&D Editors | October 15, 2012

 

Zhanyou Chi, a post-doctoral researcher, examines a lab sample of bacteria feeding in the sugar-rich fraction of bio-oil. Credit: Mike Krapfl

Microbes are working away in an Iowa State University laboratory to ferment biofuels from the sugar and acetate produced by rapidly heating biomass such as corn stalks and sawdust.
   
But it’s not an easy job for E. coli and C. reinhardtii.
   
The bacteria and microalgae, respectively, don’t like something in the bio-oil produced by fast pyrolysis—the rapid heating of biomass without oxygen and with catalysts. The result of the thermochemical process is a thick, brown oil that smells like molasses.
   
A research team led by Laura Jarboe, an Iowa State assistant professor of chemical and biological engineering, is feeding the bio-oil (also known as “pyrolytic sugars”) to the microbes. The E. coli are supposed to turn the levoglucosan in the sugar-rich fraction of bio-oil into ethanol and lactic acid; the C. reinhardtii are supposed to turn acetate-rich fractions into lipids for biodiesel.
   
It’s part of the hybrid approach Iowa State researchers are using to produce the next generation of biofuels. They’re combining two conversion paths—thermochemical and biochemical—to find efficient ways to produce renewable fuels and chemicals.
   
“The goal is to produce biorenewable fuels and chemicals in a manner that’s economically competitive with petroleum-based processes,” Jarboe said.
   
There are, however, contaminants and toxins in the bio-oil that are getting in the way of the fuel production. Jarboe and a research team are experimenting with pre-treatments of the bio-oil that could reduce the toxicity. And they’re working to develop microbes that can tolerate the contaminants.
   
In addition to Jarboe, the research team includes Robert C. Brown, the Iowa Farm Bureau Director of Iowa State’s Bioeconomy Institute, an Anson Marston Distinguished Professor in Engineering and the Gary and Donna Hoover Chair in Mechanical Engineering; Zhiyou Wen, an associate professor of food science and human nutrition; Zhanyou Chi, a post-doctoral research associate for Iowa State’s Center for Sustainable Environmental Technologies; Tao Jin, a doctoral student in chemical and biological engineering; and Yi Liang, a doctoral student in food science and human nutrition. The project is supported by a three-year, $300,000 grant from the National Science Foundation and a three-year, $315,020 grant from the Iowa Energy Center.
   

Iowa State University researchers are developing hungry, robust microbes that can feed on bio-oil fractions and produce advanced biofuels. Credit: Photo by the Bioeconomy Institute/Iowa State University

The researchers are using a technique called directed evolution to produce microbes that are more tolerant of the contaminants in bio-oil. The microbes are grown with higher and higher concentrations of bio-oil and as they divide, they replicate their DNA. Sometimes there are replication mistakes that lead to mutations.
   
“It could be a mistake that’s immediately lethal,” Jarboe said. “Or it could be a mistake that helps the microbe tolerate the problematic compounds and it grows faster.
   
“At the end of the process, we want to say, ‘Hey, I’ve got a great bug.'”
   
Every day researchers check the experiments for signs of progress. So far, Jarboe said the evolving bacteria and microalgae have been able to tolerate slightly higher concentrations of bio-oil.
   
When mutations eventually produce a better breed of microbe, the researchers will analyze genomic data to learn and understand the important mutations. That will allow researchers to duplicate the microbes for better biofuel production.
   
Jarboe said development of those hungry, robust microbes could lead to important advancements in biofuel production: a hybrid process that’s biorenewable, fast, cheap and doesn’t depend on food crops as a source of biomass.

Source: Iowa State University

Related Articles Read More >

Floating solar mats clean polluted water — and generate power
New AI model offers faster, adaptive CO₂ retrieval from satellite data
8 major R&D moves this week: Samsung invests record $24B while Porsche cuts 3,900 jobs
Ex-Google AI team launches “Generation,” an AI-driven fragrance venture
rd newsletter
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, trends, and strategies in Research & Development.
RD 25 Power Index

R&D World Digital Issues

Fall 2024 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R&D magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • Global Funding Forecast

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE