Research & Development World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE

Exotic Particle Splashes, Quantum Memory in Diamond, Nanocrystal Inks: ICYMI

By R&D Editors | April 11, 2016

In case you missed it (ICYMI), here are some of the stories that made headlines in the world of cleanrooms and nanotechnology in the past week.

This rendering illustrates the excitation of a spin liquid on a honeycomb lattice using neutrons. As with many other liquids, it is difficult to see a spin liquid unless it is "splashed," in this case by neutrons depicted as moving balls. The misaligned and vibrating spin pair in the middle signifies the ephemeral Majorana fermion constantly in motion. The ripples formed when the neutrons hit the spin liquid represent the excitations that are a signature of the Majorana fermions. The atomic structure on the left signifies the honeycomb alpha-ruthenium trichloride, in which each ruthenium atom has a spin and is surrounded by a cage of chlorine atoms. Image: Genevieve Martin/ORNLScientists at the Department of Energy’s Oak Ridge National Laboratory have used neutrons to see novel behavior in materials — this discovery holds promise for quantum computing. The findings provide evidence for long-sought phenomena in a two-dimensional magnet. About 10 years ago, it was discovered that a theoretical model of microscopic magnets (“spins”) that interact in a fashion that leads to a disordered state called a quantum spin liquid. This “Kitaev quantum spin liquid” supports magnetic excitations equivalent to Majorana fermions — particles that are unusual in that they are their own antiparticles. Scientists have theorized that Kitaev interactions exist in nature in certain materials containing magnetic ions that exhibit strong coupling between the electron spin and orbital angular momentum. Oak Ridge researchers say that one way to observe spin liquid physics in such a material is to “splash” or excite the liquid using neutron scattering.

Because this process works at relatively low temperatures, many transistors can be made on a flexible backing at once.Researchers from the University of Waterloo as well as the National Research Council of Canada have, for the first time, converted the color and bandwidth of ultrafast single photons using a room-temperature quantum memory in diamond. Shifting the color of a photon, or changing its frequency, is needed to optimally link components in a quantum network. For example, in optical quantum communication, the best transmission through an optical fiber is near infrared, but many of the sensors that measure them work much better for visible light, which is a higher frequency. Being able to shift the color of the photon between the fiber and the sensor enables higher performance operation, including bigger data rates.

An artist’s impression of quantum frequency conversion in a diamond quantum memory. Image: Dr. Khabat Heshami, National Research Council CanadaFinally, University of Pennsylvania engineers have developed a new approach for making transistor devices, by sequentially depositing their components in the form of liquid nanocrystal “inks.”  This research could make it possible for electrical components to be built into flexible or wearable applications, as the lower-temperature process is compatible with a wide array of materials and can be applied to larger areas. The researchers’ nanocrystal-based field effect transistors were patterned onto flexible plastic backings using spin coating but could eventually be constructed by additive manufacturing systems such as 3D printers.

Related Articles Read More >

6 essentials for seismic rated cleanrooms
Critical Spaces Control Platform
Phoenix Critical Spaces Control Platform uses automation to direct airflow
Endiatx
Endiatx aims to boldly go beyond traditional endoscopy and, eventually, redefine surgical scale
FMN Laboratory researcher in a cleanroom
Take our quiz to test your cleanroom IQ, covering everything from ISO Classes to ULPA filtration
rd newsletter
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, trends, and strategies in Research & Development.
RD 25 Power Index

R&D World Digital Issues

Fall 2024 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R&D magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • Global Funding Forecast

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE