Research & Development World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE

Fat Key to TB Awakening

By R&D Editors | March 29, 2010

The factors instrumental in triggering latent tuberculosis (TB) infection to progress into active disease have long remained elusive to researchers. New insight into the mystery is provided by Professor David Russell, speaking at the Society for General Microbiology’s spring meeting in Edinburgh today. His work could help develop innovative strategies for treating the disease.

Professor Russell and his group at Cornell University in New York, USA, have demonstrated that TB-causing bacteria are able to hijack fat metabolism in the host to drive the progression of the disease. The team’s research shows that Mycobacterium tuberculosis (Mtb) is able to stimulate macrophages – the immune cells the bacterium infects – to accumulate fat droplets, turning them into “foamy” cells. This cellular transformation can trigger a reawakening of the TB infection from its latent state.

Following initial infection by Mtb, the infected immune cells in the body can clump together in the lungs in a cellular mass that is surrounded by a fibrous cuff. This containing structure, called a tubercle, physically protects the bacteria from being destroyed by the immune system. This allows them to persist inside the host for years during a latent period in which the host shows no symptoms. The respiratory infection is reactivated only in a small percentage of individuals (often those who are immunosuppressed) in whom it progressively destroys lung tissue. Very little is known about the exact causes of reactivation and the relative roles of the host and the pathogen.

Professor Russell’s group discovered that inside the tubercle, surface molecules of Mtb prompted host macrophage cells to take up vast quantities of cholesterol-type lipids from the surrounding blood vessels. “We think that the lipids in the newly-formed foamy cell are then expelled into the cellular environment, which contributes to the collapse of the tubercle,” he said.

Once freed from their containing structure, the infectious bacteria are able to leak out into the airways where they can progressively destroy lung tissue. “If our model is correct, it has huge implications for vaccines and chemotherapy programmes. A more detailed knowledge of the bacterium’s life cycle and its host interactions will allow us to spot new targets for drugs – opening up new possibilities for treatment,” said Professor Russell.

Date: March 28, 2010
Source: Society for General Microbiology

Related Articles Read More >

Eli Lilly facility
9 R&D developments this week: Lilly builds major R&D center, Stratolaunch tests hypersonic craft, IBM chief urges AI R&D funding
professional photo of wooly mammoth in nature --ar 2:1 --personalize sq85hce --v 6.1 Job ID: 47185eaa-b213-4624-8bee-44f9e882feaa
Why science ethicists are sounding skepticism and alarm on ‘de-extinction’
ALAFIA system speeds complex molecular simulations for University of Miami drug research
3d rendered illustration of the anatomy of a cancer cell
Funding flows to obesity, oncology and immunology: 2024 sales data show where science is paying off
rd newsletter
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, trends, and strategies in Research & Development.
RD 25 Power Index

R&D World Digital Issues

Fall 2024 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R&D magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • Global Funding Forecast

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE