Research & Development World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE

Female Boas can Asexually Reproduce

By R&D Editors | November 4, 2010

Female Boas can Asexually Reproduce 

boa New evidence shows that boa constrictors can reproduce without sex. But one boa constrictor had babies asexually and the old-fashioned way. Her sexually produced snake (left) is shown beside one of the asexually produced females (right).

  Courtesy of Sharon Moore

In a finding that upends decades of scientific theory on reptile reproduction, researchers at North Carolina State University have discovered that female boa constrictors can squeeze out babies without mating. More strikingly, the finding shows that the babies produced from this asexual reproduction have attributes previously believed to be impossible.

Large litters of all-female babies produced by the “super mom” boa constrictor show absolutely no male influence – no genetic fingerprint that a male was involved in the reproductive process. All the female babies also retained their mother’s rare recessive color mutation. This is the first time asexual reproduction, known in the scientific world as parthenogenesis, has been attributed to boa constrictors, says Dr. Warren Booth, an NC State postdoctoral researcher in entomology and the lead author of a paper describing the study. He adds that the results may force scientists to re-examine reptile reproduction, especially among more primitive snake species like boa constrictors. The study is published online in Biology Letters, a Royal Society journal.

Snake sex chromosomes are a bit different from those in mammals – male snakes’ cells have two Z chromosomes, while female snakes’ cells have a Z and a W chromosome. Yet in the study, all the female babies produced by asexual reproduction had WW chromosomes, a phenomenon Booth says had not been seen before and was believed to be impossible. Only through complex manipulation in lab settings could such WW females be produced – and even then only in fish and amphibians, Booth says.

Adding to the oddity is the fact that within two years, the same boa mother produced not one, but two different snake broods of all-female, WW-chromosome babies that had the mother’s rare color mutation. One brood contained 12 babies and the second contained 10 babies. And it wasn’t because she lacked options: Male snakes were present and courted the female before she gave birth to the rare babies. And the versatile super-mom had previously had babies the “old-fashioned way” by mating with a male well before her two asexual reproduction experiences.

Booth doubts that the rare births were caused by environmental changes. He notes that while environmental stresses have been associated with asexual reproduction in some fish and other animals, no changes occurred in the mother boa’s environment or routine. It’s possible that this one snake is some sort of genetic freak of nature, but Booth says that asexual reproduction in snakes could be more common than people think.

“Reproducing both ways could be an evolutionary ‘get-out-of-jail-free card’ for snakes,” Booth says. “If suitable males are absent, why waste those expensive eggs when you have the potential to put out some half-clones of yourself? Then, when a suitable mate is available, revert back to sexual reproduction.”

A reptile keeper and snake breeder, Booth now owns one of the young females from the study. When the all-female snake babies reach sexual maturity in a few years, Booth will be interested to see if they mate with a male, produce babies without a mate, or – like their mother – do both. In any case, these WW-chromosomed females will continue their version of “girl power,” as any baby they produce will also be female.

Related Articles Read More >

QED-C outlines road map for merging quantum and AI
Quantum computing hardware advance slashes superinductor capacitance >60%, cutting substrate loss
Hold your exaflops! Why comparing AI clusters to supercomputers is bananas
Why IBM predicts quantum advantage within two years
rd newsletter
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, trends, and strategies in Research & Development.
RD 25 Power Index

R&D World Digital Issues

Fall 2024 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R&D magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • Global Funding Forecast

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE