Research & Development World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE

Findings to help in design of drugs against virus causing childhood illnesses

By R&D Editors | March 21, 2013

New research findings may help scientists design drugs to treat a virus infection that causes potentially fatal brain swelling and paralysis in children.

The virus, called enterovirus 71, causes hand, foot, and mouth disease and is common throughout the world. Although that disease usually is not fatal, the virus has been reported to cause fatal encephalitis in infants and young children, primarily in the Asia-Pacific region.

Currently, no cure exists for the infection.

New findings show the precise structure of the virus bound to a molecule that inhibits infection. The findings are detailed in a paper appearing in Proceedings of the National Academy of Sciences.

“These results provide a structural basis for development of drugs to fight enterovirus 71 infection,” says Michael G. Rossmann, Purdue University’s Hanley Distinguished Professor of Biological Sciences.

Rossmann is co-author of a paper with Purdue postdoctoral research associate Pavel Plevka; research scientist Rushika Perera; postdoctoral research associate Moh Lan Yap; Jane Cardosa, a researcher at Sentinext Therapeutics in Malaysia; and Richard J. Kuhn, a professor and head of Purdue’s Department of Biological Sciences.

The researchers had previously used a technique called X-ray crystallography to determine the virus’s precise structure. A small molecule called a “pocket factor” is located within a pocket of the virus’s protective shell, called the capsid. When the virus binds to a human cell, the pocket factor is squeezed out of its pocket resulting in the destabilization of the virus particle, which then disintegrates and releases its genetic material to infect the cell and replicate.

Researchers led by Rossmann have developed antiviral drugs for other enteroviruses such as rhinoviruses that cause the common cold. The drugs work by replacing the pocket factor with a molecule that binds more tightly than the real pocket factor, inhibiting infection.

In the new work, the researchers obtained a near-atomic-scale resolution 3D structure of enterovirus 71 binding with an inhibitor called WIN 51711.

“We show that the compound stabilizes the virus and limits its infectivity, probably through restricting dynamics of the capsid necessary for genome release,” Rossmann says. “Our results provide a structural basis for development of antienterovirus 71 capsid-binding drugs.”

At a resolution of 3.2 angstrom, the images show nearly atomic-scale structural features.

Hand, foot, and mouth disease, an infection most common among young children, sometimes arises in a daycare setting. Of the 427,278 cases of the disease recorded in mainland China between January and May 2010, 5,454 cases were classified as severe, with 260 deaths, according to the World Health Organization.

Source: Purdue University

Related Articles Read More >

For the first time, scientists grow beating human-pig hearts for 21 days
Open-source Boltz-2 can speed binding-affinity predictions 1,000-fold
Thermo Fisher’s new Orbitrap Excedion Pro targets complex biotherapeutics for drug development
FDA’s new ‘Elsa’ AI set to expedite clinical protocol reviews
rd newsletter
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, trends, and strategies in Research & Development.
RD 25 Power Index

R&D World Digital Issues

Fall 2024 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R&D magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • Global Funding Forecast

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE