Research & Development World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE

Football Displays Real-time Fractal Dynamics

By R&D Editors | March 19, 2014

Austrian Forward Rubin Okotie tries to score on Congo Goalkeeper Destin Onka at the 2007 FIFA U-20 World Cup. Researchers have discovered that, in European Football — or soccer — a simple rule governs the complex dynamics of the ball and the team’s front-line. Courtesy of Courtesy of Nick Wiebe New York / Heidelberg — Football, aka soccer, fascinates millions of fans, almost all of them unaware that the game is subject to the laws of physics. Despite their seemingly arbitrary decisions, players obey certain rules, as they constantly adjust their positions in relation to their teammates, opponents, the ball and the goal. A team of Japanese scientists has now analyzed the time-dependent fluctuation of both the ball and all players’ positions throughout an entire match. They discovered that a simple rule governs the complex dynamics of the ball and the team’s front-line. These findings, published in EPJ B, could have implications for other ball games, providing a new perspective on sports science.

The authors considered two scenarios of previous football matches. Namely, they focused on a quarter-final game in the 2008 FIFA Club World Cup and a regular game in the 2011 Japanese soccer league. Using a digital video camera, they then recorded the time fluctuation in the positions of all players and the ball.

Thanks to their analysis of the time-series variation in the ball versus the front-line movements of the players, they were the first to discover that these dynamics have a fractal nature. This finding implies that the movement of the ball/front-line at any given time has a strong influence on subsequent actions. This is due to the so-called memory effect, linked to the game’s fractal nature.

The authors therefore found that, for professional football games, the ball possession time for one team lasts only 30 seconds at most. As a result, the superiority of one team tends to persist for 30 seconds or less before the other team gets an opportunity to regain the advantage. The authors show that their conclusion is in broad agreement with previous studies on the 2002 FIFA World Cup.

Reference: A. Kijima, K. Yokoyama, H.Shima, and Y. Yamamoto (2014), Emergence of self-similarity in football dynamics, European Physical Journal B, DOI 10.1140/epjb/e2014-40987-5

 

Related Articles Read More >

From solar system simulations to SaaS savings, how Codeium’s AI agent empowers non-coders and scientists alike
Aardvark AI forecasts rival supercomputer simulations while using over 99.9% less compute
Quantum Brilliance, Pawsey integrate room-temp quantum with HPC on NVIDIA GH200
Frontier supercomputer reveals new detail in nuclear structure
rd newsletter
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, trends, and strategies in Research & Development.
RD 25 Power Index

R&D World Digital Issues

Fall 2024 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R&D magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • Global Funding Forecast

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE