Research & Development World

  • Home Page
  • Topics
    • Aerospace
    • Archeology
    • Automotive
    • Biotech
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Market Pulse
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Battery Technology
    • Imaging
    • Nanotechnology
    • Semiconductors
  • Controlled Environments
    • Cleanrooms
    • Graphene
    • Lasers
    • Regulations/Standards
    • Sensors
  • Scientific Computing
    • Big Data
    • HPC/Supercomputing
    • Informatics
    • Security
    • Software
  • R&D 100 Awards
    • 2020 Winners
    • Winner Archive
    • R&D 100 Conference
  • Resources
    • Digital Issues
    • Podcasts
    • Subscribe
  • 2020 Funding Forecast
  • COVID-19

Genetic Drivers of Most Common Form of Lymphoma Found

By Duke University | October 10, 2017

 Lymphoma is the most common blood cancer, but the diagnosis belies a wildly diverse and little understood genetic foundation for the disease that hampers successful treatment.

An international research effort led by Duke Cancer Institute scientists has been working to better understand the genetic underpinnings of the most prevalent form of this cancer -- diffuse large B cell lymphoma - and how those genes might play a role in patients' responses to therapies.

The researchers analyzed tumor samples from 1,001 patients who had been diagnosed with diffuse large B cell lymphoma over the past decade. These patients had been treated at 12 institutions around the world.

Using whole exome sequencing, the researchers pinpointed 150 genetic drivers of the disease, many newly identified. The team then tested to see if there were any correlations between the genes and how well patients had responded to standard therapies. The team applied a genome editing technique known as CRISPR to knock out each of thel 20,000 genes in lymphoma cells to identify those that are critical for lymphoma cells to grow. By assessing the genetic, CRISPR and clinical results, the researchers found several critical genetic links that could help guide treatments.

These findings published online Oct. 5 in the journal Cell.

"This work provides a comprehensive road map in terms of research and clinical priorities," said Sandeep Davé, M.D., professor of medicine at Duke. "We have very good data now to pursue new and existing therapies that might target the genetic mutations we identified. Additionally, this data could also be used to develop genetic markers that steer patients to therapies that would be most effective."

Related Articles Read More >

Lawrence Livermore National Lab and UK company to collaborate on universal coronavirus vaccine
ZEISS announces collaborative research partnership with Max Planck Florida Institute for Neuroscience
R&D 100 winner of the day: MilliporeSigma Blazar Platform
AI-powered microscope could check cancer margins in minutes

Need R&D World news in a minute?

We Deliver!
R&D World Enewsletters get you caught up on all the mission critical news you need in research and development. Sign up today.
Enews Signup
Tweets by @RandDWorld

R&D World Digital Issues

February 2020 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R& magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • 2020 Global Funding Forecast

Copyright © 2021 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • Home Page
  • Topics
    • Aerospace
    • Archeology
    • Automotive
    • Biotech
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Market Pulse
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Battery Technology
    • Imaging
    • Nanotechnology
    • Semiconductors
  • Controlled Environments
    • Cleanrooms
    • Graphene
    • Lasers
    • Regulations/Standards
    • Sensors
  • Scientific Computing
    • Big Data
    • HPC/Supercomputing
    • Informatics
    • Security
    • Software
  • R&D 100 Awards
    • 2020 Winners
    • Winner Archive
    • R&D 100 Conference
  • Resources
    • Digital Issues
    • Podcasts
    • Subscribe
  • 2020 Funding Forecast
  • COVID-19