Research & Development World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE

Gold Nanoantennas Create More Robust Solar Cells

By R&D Editors | May 25, 2016

A solid-state solar cell composed of titanium dioxide, nickel oxide, and gold nanoparticles. Gold nanoparticles harvest light and provide a visible light response to the cell. Image: Tomoya Oshikiri, Hokkaido UniversityScientists at Hokkaido University in Japan are making leeway in the fabrication of all-solid-state solar cells that are highly durable and can efficiently convert sunlight into energy. The team employed a method called “atomic layer deposition”, which allows scientists to control the deposit of very thin, uniform layers of materials on top of each other. Using this method, they deposited a thin film of nickel oxide onto a single crystal of titanium dioxide. Gold nanoparticles were introduced between the two layers to act like an antenna that harvests visible light.

The team tested the properties of these fabricated devices with and without an intermediary step following the deposition of nickel oxide that involves heating it to very high temperatures and then allowing it to slowly cool — a process called “annealing.”

Photocurrent generation was successfully observed on the all-solid-state photoelectric conversion device. The device was found to be highly durable and stable because, unlike some solar cells, it does not contain organic components, which have a tendency to degrade over time and under harsh conditions.

The researchers also found that annealing affected the properties of the device by changing the interfacial structure of the layers. For example, it increased the voltage available from the device but also increased the resistance within it. It also decreased the device’s efficiency in converting light to electricity. The results suggest that the structural changes caused by annealing prevent the layer of gold nanoparticles from injecting electrons into the titanium dioxide layer.

The team’s fabrication process is inexpensive and can be scaled up easily but the resultant device’s properties are still insufficient for practical use and its efficiency in converting light to energy needs to be improved. Further research is needed to understand the roles of each layer in conducting energy to improve the device’s efficiency.

Source: Hokkaido University 

Related Articles Read More >

Efficiency first: Sandia’s new director balances AI drive with deterrent work
2025 R&D layoffs tracker: 83,543 and counting
Ex-Google CEO details massive AI energy needs at House hearing, advocates for fusion and SMR R&D
Floating solar mats clean polluted water — and generate power
rd newsletter
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, trends, and strategies in Research & Development.
RD 25 Power Index

R&D World Digital Issues

Fall 2024 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R&D magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • Global Funding Forecast

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE