Research & Development World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE

Graphene Advances the Future of Silver Nanowires

By R&D Editors | November 10, 2015

New research shows wrapping silver nanowires, which are promising for applications such as flexible displays and solar cells, with an ultrathin layer of carbon called graphene protects the structures from damage and could represent a key to realizing their commercial potential. The lower images depict how graphene sheathing protects the nanowires even while being subjected to 2.5 megawatts of energy intensity per square centimeter from a high-energy laser, an intensity that vaporizes the unwrapped wires. The upper images depict how the unwrapped wires are damaged with an energy intensity as little as .8 megawatts per square centimeter. Image: Purdue UniversitySilver nanowires hold promise for applications such as flexible displays and solar cells, but their susceptibility to damage from highly energetic UV radiation and harsh environmental conditions has limited their commercialization.

New research suggests wrapping the nanowires with an ultrathin layer of carbon called graphene protects the structures from damage and could represent a key to realizing their commercial potential.

“We show that even if you have only a one-atom-thickness material, it can protect from an enormous amount of UV radiation damage,” says Gary Cheng, an associate professor of industrial engineering at Purdue University. 

Devices made from silver nanowires and graphene could find uses in solar cells, flexible displays for computers and consumer electronics, and future “optoelectronic” circuits for sensors and information processing. The material is flexible and transparent, yet electrically conductive, and is a potential replacement for indium tin oxide, or ITO. Industry is seeking alternatives to ITO because of drawbacks: It is relatively expensive due to limited abundance of indium, and it is inflexible and degrades over time, becoming brittle and hindering performance, says Suprem Das, a former Purdue doctoral student and now a postdoctoral researcher at Iowa State University and The Ames Laboratory.

However, a major factor limiting commercial applications for silver nanowires is their susceptibility to harsh environments and electromagnetic waves.

“Radiation damage is widespread,” says Das, who led the work with Purdue doctoral student Qiong Nian. “The damage occurs in medical imaging, in space applications and just from long-term exposure to sunlight, but we are now seeing that if you wrap silver nanowires with graphene you can overcome this problem.”

Findings appeared in October in the journal ACS Nano, published by the American Chemical Society. The paper was authored by Das; Nian; graduate students Mojib Saei, Shengyu Jin and Doosan Back; previous postdoctoral research associate Prashant Kumar; David B. Janes, a professor of electrical and computer engineering; Muhammad A. Alam, the Jai N. Gupta Professor of Electrical and Computer Engineering; and Cheng.

Raman spectroscopy was performed by the Purdue Department of Physics and Astronomy. Findings showed the graphene sheathing protected the nanowires even while being subjected to 2.5 megawatts of energy intensity per square centimeter from a high-energy laser, which vaporizes the unwrapped wires. The unwrapped wires were damaged with an energy intensity as little as .8 megawatts per square centimeter.

“It appears the graphene coating extracts and spreads thermal energy away from the nanowires,” Das says. The graphene also helps to prevent moisture damage.

The research is a continuation of previous findings published in 2013. The work is ongoing and is supported by the National Science Foundation and a National Research Council Senior Research Associateship.

Release Date: November 9, 2015
Source: Purdue University 

Related Articles Read More >

The emerging materials shaping next-generation semiconductor electronics
24 R&D trends that redefined 2024
Graphene-based flowmeter sensor measures nano-rate fluid flows, Part 3: The sensor
Graphene-based flowmeter sensor measures nano-rate fluid flows, Part 2: The graphene context
rd newsletter
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, trends, and strategies in Research & Development.
RD 25 Power Index

R&D World Digital Issues

Fall 2024 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R&D magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • Global Funding Forecast

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE