Research & Development World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE

Graphene Creates More Efficient Fertilizer

By University of Adelaide | March 7, 2018

Fertilizers with lower environmental impacts and reduced costs for farmers are being developed by University of Adelaide researchers in the world-first use of the new advanced material graphene as a fertilizer carrier.

In partnership with industry, the researchers have demonstrated effective slow release fertilizers can be produced from loading essential trace elements onto graphene oxide sheets.

Using graphene as a carrier means the fertilizers can be applied in a more targeted fashion, with overall increased fertilizer efficiency and great nutrient uptake by the plants. The graphene-based carriers have so far been demonstrated with the micronutrients zinc and copper. Work is continuing with macronutrients such as nitrogen and phosphate.

“Fertilizers that show slower, more controlled release and greater efficiency will have reduced impact on the environment and lower costs for farmers over conventional fertilizers, bringing significant potential benefit for both agriculture and the environment,” says Professor Mike McLaughlin, Head of the University of Adelaide’s Fertilizer Technology Research Centre at the Waite campus.

“Our research found that loading copper and zinc micronutrients onto graphene oxide sheets was an effective way to supply micronutrients to plants. It also increased the strength of the fertilizer granules for better transport and spreading ability.”

Professor Dusan Losic, nanotechnology leader in the University’s School of Chemical Engineering and Director of the University’s Australian Research Council (ARC) Research Hub for Graphene Enabled Industry Transformation, says: “Graphene is a novel new material only discovered in 2004 and has incredible properties, including a very high surface area, strength and adaptability to bind to different nutrients. We started exciting research on a broad range of applications of graphene four years ago — this is the first time graphene has been developed as a carrier for fertilizer nutrients.”

The research, carried out by PhD student Shervin Kabiri, has been published in the journal Applied Materials and Interfaces. It is a collaboration between the University of Adelaide’s Fertiliser Technology Research Centre and the University’s Australian Research Council Research Hub for Graphene Enabled Industry Transformation.

The Fertiliser Technology Research Centre was established in 2007 in partnership with The Mosaic Company, the world’s largest combined producer of phosphate and potash, to develop and evaluate more efficient fertilizer products. A new five-year, $8.5 million partnership agreement was reached with The Mosaic Company in 2015. Mosaic has an option to license the new technology and is further examining the use of graphene-based materials in fertilizers.

“This decade-long partnership is testament to the University’s strength in this area of research and our success in partnering with industry for research translation that benefits the wider community,” says Professor Mike Brooks, Deputy Vice-Chancellor Research. “Combining plant research with our new Graphene Research Hub is a great example of how the University assembles interdisciplinary teams to deliver innovation solutions for industry.”

McLaughlin says: “It’s still early days but there is no doubt that fertilizers with release rates more tailored to crop demand, and fertilizers with greater physical strength and robustness, will both improve grower efficiency of fertilizer application and efficiency of nutrient uptake.

“Successful commercialization will depend on cost of graphene/graphene oxide and the ability to scale this process up, and integrate it into the commercial fertilizer production process.”

Source: University of Adelaide

Related Articles Read More >

The emerging materials shaping next-generation semiconductor electronics
24 R&D trends that redefined 2024
Graphene-based flowmeter sensor measures nano-rate fluid flows, Part 3: The sensor
Graphene-based flowmeter sensor measures nano-rate fluid flows, Part 2: The graphene context
rd newsletter
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, trends, and strategies in Research & Development.
RD 25 Power Index

R&D World Digital Issues

Fall 2024 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R&D magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • Global Funding Forecast

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE