Research & Development World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • Educational Assets
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE

Green light for marine renewables?

By R&D Editors | September 16, 2011

Farms of ‘underwater windmills’
could affect how sand moves around our coastal seas, affecting beaches, sand
banks, and ultimately the risk of flooding, according to Bangor University
oceanographer Simon Neill.

Writing in Planet Earth, Neill explains how tidal energy farms are like
roadworks.

“When tidal currents are fast
enough, they pick up grains of sand from the seabed, which are then transported
with the flow. This is like cars picking up passengers en route to their
destination,” says Neill.

“Extracting energy from a tidal
system, for example by installing a farm of tidal stream turbines or ‘underwater windmills’, will reduce the strength of tidal flows. This is like
the impact of roadworks, leading to a reduced flow of traffic. A reduced flow
of traffic means fewer passengers can be transported. In the sea, tidal energy
farms will similarly reduce the volume of sand transported,” continues Neill.

This movement of sand feeds into
the natural systems which protect our coastlines from storm waves, such as
beaches and offshore sand banks. If a large tidal energy scheme were to disrupt
the natural flow of sand, this could make our coastline more vulnerable to
storm impacts, and could lead to increased flood risk.

However, apart from the obvious
benefits of low carbon electricity generation, artificial interventions by
tidal-energy farms could lead to positive effects. Strategic placement of
tidal-energy farms could even be used to create a natural form of coastal flood
protection by artificially manipulating offshore sand deposits. However, such
geoengineering would have to be based on a sound understanding of the
underlying oceanographic processes.

SOURCE

Related Articles Read More >

Microbes used to create usable materials from urine
Carbon capture method traps CO₂ as a solid that can be used to make cement
Floating solar mats clean polluted water — and generate power
New AI model offers faster, adaptive CO₂ retrieval from satellite data
rd newsletter
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, trends, and strategies in Research & Development.
RD 25 Power Index

R&D World Digital Issues

Fall 2024 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R&D magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • Global Funding Forecast

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • Educational Assets
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE