Research & Development World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • Educational Assets
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE

Grind Up Nanotubes and You Get Nanoribbons

By R&D Editors | June 15, 2015

 

Rice graduate student Mohamad Kabbani grinds nanotubes with a mortar and pestle. A chemical reaction takes place as the altered nanotubes are forced together, unzipping them into graphene nanoribbons. Photo by Jeff FitlowA simple way to turn carbon nanotubes into valuable graphene nanoribbons may be to grind them, according to research led by Rice University.

The trick, says Rice materials scientist Pulickel Ajayan, is to mix two types of chemically modified nanotubes. When they come into contact during grinding, they react and unzip, a process that until now has depended largely on reactions in harsh chemical solutions.

The research by Ajayan and his international collaborators appears in Nature Communications.

To be clear, Ajayan says, the new process is still a chemical reaction that depends on molecules purposely attached to the nanotubes, a process called functionalization. The most interesting part to the researchers is that a process as simple as grinding could deliver strong chemical coupling between solid nanostructures and produce novel forms of nanostructured products with specific properties.

“Chemical reactions can easily be done in solutions, but this work is entirely solid state,” he says. “Our question is this: If we can use nanotubes as templates, functionalize them and get reactions under the right conditions, what kinds of things can we make with a large number of possible nanostructures and chemical functional groups?”

The process should enable many new chemical reactions and products, says Mohamad Kabbani, a graduate student at Rice and lead author of the paper. “Using different functionalities in different nanoscale systems could revolutionize nanomaterials development,” he says.

Highly conductive graphene nanoribbons, thousands of times smaller than a human hair, are finding their way into the marketplace in composite materials. The nanoribbons boost the materials’ electronic properties and/or strength.

“Controlling such structures by mechano-chemical transformation will be the key to find new applications,” says co-author Thalappil Pradeep, a professor of chemistry at the Indian Institute of Technology Chennai. “Soft chemistry of this kind can happen in many conditions, contributing to better understanding of materials processing.”

In their tests, the researchers prepared two batches of multi-walled carbon nanotubes, one with carboxyl groups and the other with hydroxyl groups attached. When ground together for up to 20 minutes with a mortar and pestle, the chemical additives reacted with each other, triggering the nanotubes to unzip into nanoribbons, with water as a byproduct.

“That serendipitous observation will lead to further systematic studies of nanotubes reactions in solid state, including ab-initio theoretical models and simulations,” Ajayan says. “This is exciting.”

Researchers led by materials scientists at Rice University discovered that altering carbon nanotubes with carboxyl (COOH) and hydroxyl (OH) groups and grinding them together produces nanoribbons. The find could lead to novel nanostructured products with specific properties. Click the image for a larger version. Courtesy of Mohamad KabbaniThe experiments were duplicated by participating labs at Rice, at the Indian Institute of Technology, and at the Lebanese American University in Beirut. They were performed in standard lab conditions as well as in a vacuum, outside in the open air and at variable humidity, temperatures, times, and seasons.

The researchers who carried out the collaboration on three continents still don’t know precisely what’s happening at the nanoscale. “It is an exothermic reaction, so the energy’s enough to break up the nanotubes into ribbons, but the details of the dynamics are difficult to monitor,” Kabbani says. “There’s no way we can grind two nanotubes in a microscope and watch it happen. Not yet, anyway.”

But the results speak for themselves.

“I don’t know why people haven’t explored this idea, that you can control reactions by supporting the reactants on nanostructures,” Ajayan says. “What we’ve done is very crude, but it’s a beginning and a lot of work can follow along these lines.”

Co-authors are Rice graduate students Chandra Sekhar Tiwary, Sehmus Ozden, and Yongji Gong; Pedro Autreto, Gustavo Brunetto, and Professor Douglas Galvao of the State University of Campinas, Brazil; Anirban Som and K.R. Krishnadas of the Indian Institute of Technology Madras; Robert Vajtai, a senior faculty fellow at Rice, and Ahmad Kabbani, an adjunct faculty member at Rice and a professor of chemistry at the Lebanese American University, Beirut.

The research was supported by the Air Force Office of Scientific Research and its Multidisciplinary University Research Initiative; the Brazilian National Council for Scientific and Technological Development, CAPES (Coordination of Improvement of Higher Education Personnel) and the São Paulo Research Foundation; the Center for Computational Engineering and Sciences at the State University of Campinas, and the Nano Mission, Government of India.

Release Date: June 15, 2015
Source: Rice University 

Related Articles Read More >

The emerging materials shaping next-generation semiconductor electronics
24 R&D trends that redefined 2024
Graphene-based flowmeter sensor measures nano-rate fluid flows, Part 3: The sensor
Graphene-based flowmeter sensor measures nano-rate fluid flows, Part 2: The graphene context
rd newsletter
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, trends, and strategies in Research & Development.
RD 25 Power Index

R&D World Digital Issues

Fall 2024 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R&D magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • Global Funding Forecast

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • Educational Assets
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE