Research & Development World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE

Hand transplant research sheds light on touch

By R&D Editors | November 17, 2014

Recovery of feeling can gradually improve for years after a hand transplant, suggests a small study that points to changes in the brain, not just the new hand, as a reason.

Research presented at a meeting of the Society for Neuroscience sheds light on how the brain processes the sense of touch, and adapts when it goes awry. The work could offer clues to rehabilitation after stroke, brain injury, maybe one day even spinal cord injury.

“It holds open the hope that we may be able to facilitate that recovery process,” said Scott Frey, a cognitive neuroscientist at the Univ. of Missouri in Columbia.

When surgeons attach a new hand, nerves from the stump must regenerate into the transplanted limb to begin restoring different sensations, hot or cold, soft or hard, pressure or pain. While patients can move a new hand fairly soon, how quickly they regain feeling and what sensations they experience vary widely.

After all, the sense of touch isn’t just about stimulating nerves in the skin. Those nerves fire signals to a specific brain region to decipher what you’re touching and how to react. Lose a limb and the brain quickly rewires, giving those neurons new jobs. Frey’s work shows the area that once operated a right hand can start giving the left hand a boost.

Brain scans suggest those changes are at least partially reversible if someone gets a hand transplant years later. But little is known about how the brain’s reorganization affects recovery.

Telling where on the palms or fingers they’re being touched without looking is a persistent problem for hand transplant recipients, and a function of the brain’s main sensory area. Frey’s team compared four transplant recipients, four patients whose own hands were reattached immediately after injury, and 14 uninjured people.

The longer the time since their surgeries, the more accurately patients located a light touch, Frey reported. Two who’ve had transplanted hands for eight and 10 years, respectively, were almost as accurate as uninjured people. So were two patients whose own hands were reattached 1½ and three years earlier.

Nerve regeneration is thought to take about two years, Frey said.

“Yet their sensory abilities and motor abilities continue to improve, albeit gradually, as long as we’ve been measuring,” he said, suggesting the brain continues to adapt.

Hand transplants are relatively new and rare. The United Network for Organ Sharing last summer began regulating them like it does organ transplants, and knows of about two dozen recipients in the U.S. since 1999.

But they offer a model for the brain’s ability to reorganize after a stroke or other injuries that are harder to study, said Gordon Shepherd, a Yale Univ. neuroscientist who wasn’t involved in the work.

“It has quite broad implications” for research on recovery, he said.

Touch isn’t just a functional sense. Another study presented at the Society for Neuroscience examined its emotional side.

Certain nerves register pain or itching. A completely different nerve detects the pleasure of a caress.

Those nerve fibers have been studied mostly in animals. They’re found on the backs of mice, less on the limbs and never the paws. In humans, they’ve been found only in hairy skin. Previously, researchers measured the nerves’ activity in human forearms, and found they fired mostly after a gentle stroke that people called pleasurable but not after a fast pat.

The theory is that these nerves evolved for social bonding. So Susannah Walker of Liverpool John Moores Univ. tested if people experienced empathy when viewing video clips of different touches.

Observing someone being gently stroked, people rated the touch to be pleasurable on the back and shoulder, but less so the forearm and not the palm, Walker found. A fast pat wasn’t deemed pleasurable.

“It shows how our brains actually can vicariously take part in not only our own feelings, but in the feelings of those we see about us,” said Yale’s Shepherd.

Touch is crucial for infant development, and Walker says a next step is learning if these nerves behave differently in developmental disorders such as autism.

Related Articles Read More >

Open-source Boltz-2 can speed binding-affinity predictions 1,000-fold
Thermo Fisher’s new Orbitrap Excedion Pro targets complex biotherapeutics for drug development
FDA’s new ‘Elsa’ AI set to expedite clinical protocol reviews
Waters touts six-fold robustness with new Xevo TQ Absolute XR
rd newsletter
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, trends, and strategies in Research & Development.
RD 25 Power Index

R&D World Digital Issues

Fall 2024 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R&D magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • Global Funding Forecast

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE